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Abstract: 
This report contains the complete proceedings of the 13th 
International Workshop on Targetry and Target Chemistry. The 
Workshop was held at Risø National Laboratory for Sustainable 
Energy on July 26-28 2010.    
 
The workshop deals with the development of methods and systems 
for efficient production of radioactive isotopes with accelerators. 
The WTTC series of workshops was initiated for the purpose of 
exchanging information about the problems and solutions 
associated with the production of radioisotopes for biomedical 
research and their applications to the diagnosis and treatment of 
disease. The goal of the WTTC is to advance the science associated 
with radioisotope production targetry. The Workshops are designed 
to bring experienced targetry scientists together with newcomers to 
the field, both from industry and academia, to discuss issues of 
targetry and target chemistry and approaches to exploring in situ 
target chemistry and the engineering required to optimize 
production yields. In the workshop, experience, ideas and 
information are freely and openly shared; learning and 
collaborations are fostered, with active participation by all 
attendees. This participation includes both formal and informal 
sessions. The present proceedings captures both submitted abstracts 
and the actual presentations showed during the very successful 
workshop meeting number 13 in the row, the WTTC13. 
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G.H. White “The Generation of Random-Time Pulses at an Accurately Known Mean1

Rate and Having a Nearly Perfect Poisson Distribution” J. Sci Instrum. 1964, Vol 41

 W.R. Leo; Chapter 14.6 in  Techniques for Nuclear and Particle Physics Experiments: 2

A How-To Approach,   Springer Verlag,  ISBN 0-387-57280. New York, Berlin, Heidelberg, 1994

Extending a Scintillation Counter’s Dynamic Range

Lewis Carroll
Carroll & Ramsey Associates

Berkeley, CA, USA

Introduction  Our compact, solid-state scintillation probes are widely used as HPLC / GC radiation
detectors for quality assurance in PET/nuclear medicine research labs and radio-pharmacies. The
detector probes operate in AC-coupled, pulse-counting mode, with a threshold discriminator to
exclude noise and to minimize baseline fluctuation and drift. 

The threshold discriminator is followed by an analog  ratemeter to produce a voltage signal that is
proportional to the time-rate of photon-induced pulses which exceed the pre-set threshold. Using
this scheme, the ability to discern and evaluate the smallest radio-chromatography peaks – the
minimum detectable signal – is governed by fluctuations in the base-line from ambient radiation
background in the lab which, in turn, requires that the detector probe be well shielded so that it
‘sees’ only the radiation emanating from a loop of flow-tubing placed in tight proximity to the probe.

While this scheme is optimum for detection at low-to-moderate levels of radioactivity encountered
in a typical quality-assurance radio-assay, pulse-counting detectors generally suffer from saturation
effects due to counting system dead-time when exposed to high levels of radioactivity.  In an effort
to broaden the potential application of our scintillation detector products, we are engaged in an
ongoing development program to enhance detector system linearity and dynamic range by
reducing saturation effects at the ‘high-end’ while preserving system sensitivity at the ‘low end’. 

Stress-Testing at high count-rates To facilitate our development, we use home-made random
pulse generators   operating in parallel. Each pulse generator drives its own  light-emitting diode1

to simulate scintillation pulses (pulse width ~ 200 nsec) from a CsI(Tl) scintillator crystal. The fixed-
amplitude, random light-pulses are pre-set to match the  511 KeV principal peak in our 1 cm3

crystal,  and are directed at a 1 cm  Si PIN diode + charge-integrating preamplifier  (to include the2

effects of electronic noise inherent in a room-temperature semiconductor diode detector) all placed
inside a light-tight enclosure to emulate our scintillation detector probe’s ‘front end’.   Each
generator delivers  pulses at Poisson random  intervals with an adjustable mean rate covering a
range of ~100 pulses per second up  to ~125K pulses per second. A pair of  generators  can
produce a mean rate up to  ~250K pulses per second, providing a convenient, readily-controllable
source of detector system excitation over a wide range of count-rates, without having to handle
large quantities of radioactive material. The ‘Poisson-ness’ of our random pulse generators was
validated by recording the distribution of inter-pulse waiting times for various mean  rates, using
a calibrated  time-to-amplitude converter plus multi-channel analyzer.

Extending Dynamic range   In a radiation counter, input pulses which exceed a pre-determined
threshold generate corresponding output pulses of fixed amplitude  which, in turn, are either
counted digitally or time-averaged in an analog  rate-meter circuit.  A different solution, now under
development,  entails giving up on  the notion of pulse ‘counting’, per se, and replacing the
standard threshold discriminator with a new circuit combining the functions of a threshold
discriminator, a pedestal generator, and a linear gate .  The sketch below compares the input-2

output characteristic of a standard discriminator  versus our new circuit. 

The output of a standard discriminator circuit is zero for input pulses less than the threshold, and
steps to a fixed, pre-determined value for input pulses which exceed the threshold.  In the new
circuit, the output is again zero for input pulses which are less than the threshold; when the input
pulse exceeds the threshold, the output steps,  then linearly follows the amplitude of the input.

The analog time-averaged (analog  rate-meter) output signal from this circuit is proportional to the
time-average of energy absorbed (i.e., dose-rate) in the detector probe.  The new circuit retains
the noise-reducing and drift-reducing advantages of a standard threshold discriminator at low count
rates, but with the added advantage that integrated energy/amplitude information contained in

1

kmje
Typewritten Text
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 Knoll, Glenn F; Chapter 3, sec. VII in  Radiation Detection and Measurement;  John3

Wiley and Sons New York, 1979. 

signal pulses which overlap and ‘pile up’  is preserved
over a substantially  greater range of input
excitations. Our useful range now extends well
beyond the point where a standard discriminator’s
output has ‘flat-lined’.
 
The plots below compare three different detector
outputs versus input count rate excitation. The
vertical scales are normalized so that all the curves
are tangent at low input count rates.  In our present
system, ‘busy time’ for a single event is governed by
the shaping-amplifier’s pulse-width, which is on the
order of ~25 micro-seconds – in our case a
necessary but reasonable compromise between low
dead-time and low noise floor.  A wider system band-
width (shorter shaping time-constant) would allow a
narrower pulse which, in turn, would yield a higher
maximum count rate, but that would come at the cost
of a higher noise floor, requiring a correspondingly
higher threshold setting, potentially compromising
performance for lower-energy photon-emitters.

As shown below, the digital output count-rate peaks
at ~17 kHz for 50 kHz input, then gradually declines
due to a ‘paralyzing dead-time’ component  and3

finally plateaus at  ~13 kHz . However, the analog-
rate-meter – or analog average – of that same time-
over-threshold discriminator signal has a significantly
greater dynamic range, since the discriminator’s output pulses  vary in duration, staying ‘high’ when
responding to multiple, overlapping input pulses as long as they are of sufficient amplitude to
exceed the pre-set threshold.  Of course the time-over-threshold analog-rate-meter’s output
eventually saturates as well, but with a gradual and  asymptotic,  ‘non-paralyzing’ characteristic.

New Circuit Our  new discriminator circuit significantly extends the useable range of the detector.
With this circuit, saturation effects  begin to set in at ~150 kHz input count-rate, but the analog
output is monotonic –  still increasing – up to the present limit of our test apparatus.  

The simplest, most  common means
to achieve detector system DC base-
line stability – absolutely vital at low
count-rates –  is to employ capacitive
AC coupling with base-line restoration
at the input to the discriminator. That,
however,  combined with the shaping
amplifier’s constrained bandwidth,
leads to  a  loss of ‘DC-average’
information, ultimately causing the
apparent signal drop-off at high count
rates.

We are currently revisiting many of
our prior circuit design assumptions.
At the time of this submission, we are
seeing preliminary, albeit intriguing
and very encouraging test-bench
results suggesting there is reason to
expect significant improvement over
the results posted here.
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Development of a target system at the baby cyclotron BC1710 for 

irradiation of solids and gases and the adaptation of existing target 

systems to the external beamline at the injector of COSY 

B. Scholten, S. Spellerberg, W. Bolten, H. H. Coenen 

Institute of Neurosciences and Medicine, INM-5: Nuclear Chemistry,  
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany  

 

In former years most of our radionuclide development studies were done at the compact 
cyclotron CV 28 of the Forschungszentrum Jülich. Several dedicated target systems were 
constructed to irradiate solid and gaseous targets, either for cross section measurements or 
for production of radionuclides [1-16 ].  

Due to the decommissioning of the compact cyclotron CV 28 in 2006 new target systems had 
to be developed at our baby cyclotron BC1710. This cyclotron is used to produce the light 
PET isotopes (18F, 11C, 13N) in special gas chambers and in water targets. These specialized 
target systems are arranged in a target changing system with six positions. There was no 
target system at our BC1710 for the irradiation of solid targets and gas cells. So a beam line 
extension at the lowest position of the target changing system was constructed with a water 
cooled beam collimator and electrical insulation of the targets for beam current 
measurement. The front plate allows inserting different target holders close to the main end 
of the beam line. Target holders were constructed for the irradiation of foils and pellets in the 
stacked foil technique, which also allows irradiating powders in aluminum capsules. 
Furthermore, it is also possible to insert a slanting target for the production of radionuclides 
(i.e. 124I, 120g+mI, 48V) at higher currents. All target systems are water cooled. A special front 
plate was constructed for the external irradiation of gas cells. During the development of the 
target system several optimizations had to be done to collimate the beam and to increase the 
beam efficiency on the target. 

 

 

 

 

 

 

 

Fig. 1: Drawing of the beamtube extension at the BC 1710 with inserted stack foil holder.   
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Fig. 2: Picture of the component parts of the BC1710 beamline extension before assembling. 

 

At the injector of COSY an internal target system exists for the irradiation of targets in the 
stacked-foil mode using the just extracted beam of the cyclotron [17]. At this position there is a 
geometrical limitation for the target system and special care has to be taken that no 
contamination of the internal part of the cyclotron can happen. Intense water cooling of the 
targets is not possible there. Therefore an adaptation system at the end of an external 
beamline of the injector of COSY was developed which allows using all former target holder 
systems and dedicated targets developed earlier for the CV 28. In the adapter four 
adjustable water cooled sector absorbers are built in to collimate the beam. The beam 
windows are cooled by a helium gas stream. Manual remote control of the system is possible 
from outside the cyclotron vault and a PC based remote system is projected. 
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Search for the ideal cyclotron stripper foil  
 
John O. Stoner, Jr. 
 
ACF-Metals, The Arizona Carbon Foil Co., Inc. 
2239 E. Kleindale Road 
Tucson, Arizona  85719-2440 U.S.A. 
<metalfoil@cox.net> 
 
Although carbon stripper foils can now be obtained in any thickness desired by the 
cyclotron user, it is still necessary to replace foils occasionally because of their finite 
lifetimes.  Limits on lifetime occur because of poor mounting, vacuum disasters, 
mechanical shock, nuclear collisions (causing violent atomic displacements), thickening, 
nuclear and electronic heating with resulting evaporation and diffusion, erosion by 
residual gas, and many other effects.  Beam currents are increasing steadily; this trend 
is expected to continue.   Most problems are accentuated at higher beam currents.  
ACF-Metals is searching through foil compositions, allotropes and mounting methods to 
identify promising routes to obtaining longer-lasting foils. 
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New Gaseous Xenon Target for 123I Production  

Jožef J. Čomor 1, ðuro Jovanovi ć1, Jean-Michel Geets 2, Bernard Lambert 3 

1ELEX Commerce, Hilandarska 28, 11000 Belgrade, Serbia 
2IBA Molecular, Chemin du Cyclotron 3, 1348 Louvain-la-Neuve, Belgium 
3IBA Molecular Europe, Le christ de Saclay B.P. 32, 91192 Gif-Sur-Yvette, France 

123I is one of the best suited radionuclides for SPECT (Single Photon Emission Computed 
Tomography) due to its short half life (13.2 h) and low absorbed dose in patients for its low energy 
gamma emission (154 keV), which is ideal for detection by common scintillation detectors. It is 
most commonly produced in gaseous Xe targets irradiating highly enriched 124Xe by 30 MeV 
protons and exploiting the indirect production path via 123Xe. This technology is well established 
and performed in several cyclotron centers; however radiation safety aspects and the danger of 
losing the expensive target material are always a concern. Thus, every effort is needed to ensure 
that the target remains tight during irradiation, while the service and maintenance should be quick 
and reliable in order to reduce the dose received by the personnel. 
 
The most critical part of every gaseous target is the double window system, there are two possible 
approaches in handling this issue: hard bolting the windows via flanges and metal seals to the 
target body, or using window packages, which can be remotely replaced prior failure of elastomer 
seals. The first approach allows for long periods between scheduled replacements of the target 
assembly (approx. once in 12 months); however the radiation dose received by the operator during 
this maintenance is substantial. Moreover, one needs at least two complete targets for 
uninterrupted production (one in operation while the other is cooling down for maintenance). The 
second approach requires more frequent replacement of the window package (approx. once in 3 
months) without any radiation hazard for the operators. 
 
It is obvious that this second approach is more favorable, thus the new target station has been 
developed following this concept, with the aim to provide more reliable operation than what the 
existing target stations can provide. To this end a new mechanism for window foil package 
replacement has been designed. Unlike the previous target stations, it has no robotic arm. 
Moreover, there are no sliding seal based connections for compressed air and helium, thus the 
reliability of the window package replacement mechanism is greatly increased and in the same 
time the possibility of losing the target material from the helium cooling loop in case of window 
burst is negligible. 
 
In addition, the target locking mechanism has been also improved: previous designs relied on 
uninterrupted compressed air supply, thus in case of accidental burst of supply tubing during the 
irradiation the enriched target material would be lost and the vault would be heavily contaminated. 
The new locking mechanism keeps the target chamber normally locked. Compressed air is needed 
only for unlocking the target chamber for window package replacement, i.e. the safety of the target 
station does not depend on external factors. 
 
The target is patent pending and detailled design will be presented later on (at time of conference). 
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Mass Production of 64Cu with 64Ni(p,n)64Cu Nuclear Reaction 

Kwon Soo Chun*, Hyun Park, Jaehong Kim 

Korea Institute of Radiological and Medical Sciences, Seoul, Korea 

* Corresponding author: kschun@kcch.re.kr 

 

Introduction 

64Cu (T1/2 = 12.7h, β- decay: 40%, β+ decay: 19%, E.C. decay: 41%) is one of the most useful 
radioisotope in nuclear medicine due to its multiple decay mode and the intermediate half-life. 
Several nuclear reactions, i.e., 64Ni(p,n)64Ni, 68Zn(p,αn)64Cu and 64Ni(d,2n)64Cu have been 
investigated for 64Cu production[1,2].  The highest production yield could be obtained with proton 
irradiation on the enriched 64Ni target. Therefore for mass and routine production, the 64Ni target 
fabrication by using electroplating[3], the reliable chemical separation of 64Cu from the irradiated 
64Ni target and the effective recovery process for the recycling of very expensive enriched material 
( 64Ni enrichment : 96%, $20,000/g) and so on are absolutely necessary to be established. In this 
work, we report our mass production method of 64Cu with enriched 64Ni and Cyclone-30 accelerator. 

 Methods 

64Cu was produced with high current cyclotron via 64Ni(p,n)64Cu nuclear reaction at 200μA, 
18MeV proton beam. Nickel target was prepared by electro-plating of enriched 64Ni (25% of 
enrichment) on Au coated Cu cooling plate. After proton beam irradiation, Ni target was dissolved 
with circulation of 50ml of 5N HCl on the dissolving device (home made) and 90°C heating.  Water 
was added to 64Ni solution to dilute the normality of hydrochloric acid to 0.5N. Radiochemical 
separation of 64Cu from Ni target solution was performed with 0.01% dithizone in CCl4 solvent 
extraction and back extraction with 7N HCl[4]. Purification of back extracted 64Cu solution was 
carried out with AG1-x8 (Bio-Rad) anion exchange resin. For 64Ni recycling, 64Ni from the aqueous 
phase of solvent extraction and the electrolyte of electroplating was recovered by using AG1-x8 
anion and AG50w-x8 (Bio-Rad) cation resin[5]. 

Results 

With the electroplating cell designed by ourselves and the electrolyte, consisting of 1.5g 
64Ni(25% enrichment), 1.0g boric acid and 2.0g NaCl in 90ml distilled water, the smooth and 
uniformed Ni target (thickness : > 50mg/cm2, area: 1 x 10cm2) was obtained with applying 200mA 
of constant current on the cathode for 5hrs. The cathode current efficiency was about 50%. There 
was no damage on Ni surface during more than 200μA proton beam irradiation. The chemical 
separation yield of 64Cu with solvent extraction and anion exchange resin was more than 90% and 
the radionuclidic purity was more than 99% 1 day after bombardment. The 64Ni recovery yield was 
quantitative and measured with 57Ni activity produced with 58Ni(p,2p)57Ni nuclear reaction and AA 
spectroscopy. 

Conclusion 
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     64Cu production yield was about 9mCi/μAh corrected on 96% enrichment at EOB with 
64Ni(p,n)64Cu nuclear reaction and Cyclone-30. The chemical separation yield and the radionuclidic 
purity of the final 64Cu solution was more than 90% and 99%, respectively. The 64Ni recovery yield 
performed with ion exchange resin was more than 98%. 
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Activity Delivery System 

D.B.Mackay1, C.Lucatelli1, R. van Ham2, M. Willemsen2, P. Thoonen2, B. Kummeling2, 

J.C.Clark1 

1CRIC, University of Edinburgh, 2Von Gahlen, Nederland B.V 

The CRIC radio-chemistry facility requires that radio-nuclides produced on a GE PETtrace 8 

cyclotron are delivered to 4 hot cells in a GMP production lab and to 3 hot cells in a R&D lab.  

CRIC is working closely with Von Gahlen to develop a comprehensive radionuclide delivery 

system. The ADS is capable of supplying radioactive gases and liquids safely and reliably from the 

cyclotron to all of the points of use. The switching valves also have the possibility of directing the 

radio-nuclides to waste.  

The route possibilities are shown in figure 1.  

 

 

Figure 1: Delivery system routes. 
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The switching valves and isolation valves have all been selected for their proven reliability and 

adequate performance characteristics.  

The system will be controlled by a plc. Software will be validated to GAMP 5. 

The operator can control the delivery from one of three touch screen panels.  

The system has been designed with a high level of safety both for the operators and the 

environment. The whole system is enclosed in a stainless steel box. The box has separate 

compartments for the valves and the control equipment. The valves and filters are housed in an 

airtight lead-shielded compartment (75mm) which is ventilated. The extract air is filtered with 

HEPA/charcoal filters. 

Access inside the shielded compartment is not possible while delivery is in progress or when the 

radiation level is above a pre-set threshold. This is achieved by interlocking the door lock to an 

internally mounted radiation detector.  

Delivery along the chosen route can only occur when safe pre-conditions have been met (e.g. hot 

cell doors closed). 

The lines to the hot cells are run in floor trenches under the hot cells. The trenches are shielded 

with 75mm of lead and provided with hatches to facilitate replacement of lines. 

 

Views of the box are shown below. 

 

      
 

Figure 2: Activity delivery system shielded box 
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Integrated GMP PET Radiotracer Production and Dispensing Facility  

C. Lucatelli1, D. B. Mackay1, G. Mokosa2, C. Arth2, R.C. van Ham, M.A.B. Willemsen3, J. C. 

Clark1 

1University of Edinburgh, CRIC, 2 Millipore France, 3Von Gahlen Nederland B.V 

Dispensing of PET radiopharmaceuticals can be done either by final thermal sterilization or by 

sterile filtration. If thermal sterilization is the recommended method, it is very often impractical 

(short half-life, tracer thermo-sensitive) and many PET radiotracers are therefore dispensed by 

sterile filtration. 

Among all the Quality Control tests required, prior to batch release, by Good Manufacturing 

Practice and European Pharmacopeia standards, the integrity of the membrane filter used during 

the final dispensing is to be checked. This activity is relatively time consuming and is the main 

source of analyst finger radiation doses.  

To overcome this problem, we decided that this test should be automated and “in line” to avoid 

manual handling of this highly active filter, and to allow other activities to be performed as the filter 

is being tested. 

The University of Edinburgh is currently setting up a brand new PET radiotracer production facility, 

as part of its new Clinical Research Imaging Centre (CRIC) and wants to achieve a state of the art 

uncluttered integrated facility.  

 

Figure 1: GMP production lab hot cells assembly. 
From left to right: ventilated HPLC cabinet; GE 
FASTLab dispenser and sterilizer; 2 VG SB2S hot 
cells; 2 VG SB2S hot cells; VG Grade A DPB-LF 
dispenser. 

 

 

Figure 2: Millipore Integritest® 4 

 

 

 

This facility will operate a GE PETtrace 8 cyclotron equipped with 5 targets: 2 Niobium for 18F 

production, 1 11C-CO2, 1 11C-CH4 and 1 15O-target. The 4 first targets will be connected to 2 

independent labs, a GMP production housing 4 hot cells and a R&D lab housing 3 hot cells. The 

target will be routed to the right destination using a specially designed Activity Delivery System.  A 

specialy designed ventilated HPLC cabinet, integrated within the row of hot cells will house 2 GE 
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syntheziser module electronic racks, 2 semi-preparative HPLC pumps and a computer controlling 

the cyclotron. 

In addition to the 4 production hot cells, the GMP production lab will be equipped with 2 dispenser 

hot cells, a GE FASTLab dispenser and autoclave for thermal sterilisation and a Grade A Von 

Gahlen DPB-LF hot cell for the aseptic dispensing of radiotracers sensitive to heat or with a short 

half-life. Each of the production hot cells will be connected via shielded ducts to both dispensers. 

As part of the design of the lab, we investigated the possibility of integrating a filter integrity test 

facility into our aseptic dispensing hot cell.  

We decided to use the “off the shelf” Millipore Integritest 4 (Networked version) as a basis for this 

system, due to its modular design. We worked jointly with Millipore and Von Gahlen to achieve a 

solution which would allow the filter to be directly and automatically tested as part of the dispensing 

process. 

The challenge was to integrate this tabletop system into the hot cell without compromising the 

Grade A laminar flow and the radioprotection. To achieve this integration, the commercial system 

needed to be disassembled. The touch screen computer panel is located on the front face of the 

hot cell. The part connected to the filter (External Valve Array) is fitted into the shielded 

environment and the remaining parts are located in a shielded enclosure on the top of the hot cell. 

A solenoid valve protects the Millipore External Valve Array during the filtration of the product . The 

filter is connected to product transfer line and to the Millipore Integritest® 4 by a sterile single use 

Vygon tubing assembly equipped with a check valve. 
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Figure 3: Integration of the Millipore Integritest®4 into the Von Gahlen DPB-LF hot cell. 
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Synthesis of 4-[18F]Fluorobenzaldehyde in a CPCU for Peptide Labeling 

V.M. Lara-Camacho, J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-
Moreno, M.A. Avila-Rodriguez 

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, 
México, D.F., México 

Objetives: Implement the synthesis of 4-[18F]fluorobenzaldehyde ([18F]FB-CHO) in a CTI/Siemens 
Chemistry Process Control Unit (CPCU) for peptide labeling. 
 
Methods: No-carrier-added [18F]FB-CHO was prepared by radiofluoridation of 4-formyl-N,N,N-
trimethylanilinium triflate precursor in two reaction vessels. Reagents used in the synthesis are 
summarized in table below. After elution of 18F- from QMA cartridge and azeotropic distillation at 
110°C in reaction vessel #1, precursor was added, bubbled for a few seconds, and transferred to 
reaction vessel #2. Fluorination reaction was performed at 60°C for 10 min [Speranza et al., Appl. 
Radiat. Isot. 67 (2009) 1664] and the residue mixture was diluted with 3 mL of H2O. The product 
was trapped in a Sep-Pak C18 cartridge and washed with 10 mL of H2O. [18F]FB-CHO was eluted 
with 0.5 mL of EtOH. For peptide labeling HYNIC-peptide conjugates were incubated with [18F]FB-
CHO at 50°C, 25 min, pH 4.5. Purification was performed by gradient-HPLC in a semi-prep C18 
reverse phase column with EtOH/H2O 10-80% in 20 min [Lee et al., Nucl. Med. Biol. 33 (2006) 
667] 

 
Vial # Reagents Vessel # 1 Reagents Vessel #2 

1 K222/K2CO3 Vial empty 
2 2 mL CH3CN Vial empty 
3 5 mg precursor in 1 mL DMSO Vial empty 
4 Vial empty 3 mL H2O 
5 Vial empty 10 mL H2O 

 
Results: [18F]FB-CHO was obtained in a decay corrected RCY of 30% within 50 min with a 
RCP>95%. The peptides Try3-Octreotide (TOC) and c-RGDyK (RGD) were labeled with 60-90 
efficiencies with RCP>99% after HPLC purification, independently of the peptide used. MicroPET 
studies were performed with [18F]FB-CH=N-NYNIC-RGD using C6 glioma xenografts in nude mice. 
 
Conclusions: After the CPCU was replaced with a modern FDG-maker in our institution, to this 
chemistry module was given a second chance for the synthesis of other tracers taking advantage 
of its simplicity and versatility. In this work, [18F]FB-CHO was successfully prepared and used for 
peptide labeling with a RCY highly enough for clinical applications. 
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A comparison of Nb, Pt, Ta, Ti, Zr, and ZrO2-sputtered Havar foils for the 
high-power cyclotron production of reactive [18F]F-  

K. Gagnon, J.S. Wilson, and S.A. McQuarrie  

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA 

Introduction: Previous studies performed at the Edmonton PET Centre (EPC) have demonstrated 
that the use of Nb-sputtered Havar foils during [18F]F- production via proton irradiation of [18O]H2O 
decreases the radionuclidic and chemical impurities within the irradiated water1. Given the 
improved [18F]F- reactivity, increased [18F]FDG yield consistency, and decreased need for target 
rebuilding noted for Nb-sputtered Havar, these sputtered foils were adopted as the standard 
practice for [18F]F- production at our facility in mid-2006. Following prolonged use of the Nb-
sputtered foils however, degradation of the niobium film has been noted, with Havar impurities, 
FDG yield consistency and [18F]F- reactivity returning over time to levels comparable with that of 
non-sputtered Havar.  

Aim: The goal of this current work was to find a film that demonstrates increased longevity with 
regards to [18F]F- reactivity when compared with niobium.  

Methods: All film sputtering (Nb, Pt, Ta, Ti, Zr, and ZrO2) was performed on 30 µm Havar at the 
University of Alberta’s NanoFab micro and nanofabrication research facility (Edmonton, AB). Film 
thicknesses were verified through profilometer measurements and SEM micrographs.  
To test the Havar impurity reducing properties of the sputtered foils (thicknesses = 250–450 nm), 
test irradiations were performed using 2.8–3.0 mL Barnstead 18MΩ-cm natH2O. Multiple (N = 9–15) 
test irradiations (of 1,000 µAmin and 5,000 µAmin) were performed on all foils at 17.5 MeV using 
the EPC’s TR 19/9 cyclotron to achieve total integrated currents of approximately 20,000–30,000 
µAmin (weighted average currents of 69–81 µA). To ensure consistent irradiation conditions and 
complete sample transfer, both the 13N saturated yield and the recovered natH2O mass were 
measured following all irradiations. Following 13N decay, all water samples were assayed for 
radionuclidic impurities using an HPGe detector (dead time < 5%). Chemical analysis for 
extractable metals was also performed for a subset of the water samples via inductively coupled 
plasma mass spectroscopy (ICP-MS) at the Exova Lab (Edmonton, AB).  

As tantalum was the only film which demonstrated Havar impurity-reducing properties comparable 
to niobium, the foil above was further irradiated to a total integrated current of 80,000 µAmin. Given 
the excellent continued performance noted via radionuclidic contaminant analysis, our next step 
was to install a new Ta-sputtered foil on our main production target for the purpose of testing both 
the [18F]F- reactivity and evaluating the tantalum film’s longevity performance. Prior to installation of 
the Ta-sputtered Havar on our production target, a series of five 1,000 µAmin (65 µA) natH2O test 
irradiations were performed on the existing (previously irradiated to ~980,000 µAmin) 400 nm Nb-
sputtered Havar foil to establish a baseline to which the tantalum results could be compared. A 
new 900 nm Ta-sputtered Havar foil was installed and the produced [18F]F- used for routine 
production of [18F]FDG, [18F]FAZA, and [18F]FLT. Periodically (every 75,000–100,000 μAmin), a 
series of four test irradiations (1 @ 5,000 μAmin followed by 3 @ 1,000 μAmin) were carried out at 
65 μA on natH2O. All test irradiations were assayed for radionuclidic impurities.  
                                                            
1 Avila‐Rodriguez, et al., Appl. Radiat. Isot. (2008) 66: 1775         2 Wilson, et al., Appl. Radiat. Isot. (2008) 66: 565 
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Results: The following figure summarizes the Havar-associated radionuclidic impurities measured 
for the initial (approx. 20,000–30,000 µAmin) test irradiations, and the Ta-sputtered sputtered foil to 
80,000 µAmin (“Ta (80k)”). With a clear dependence noted on the integrated current, the reported 
values are given as the average and standard deviation of the end-of-bombardment (EOB) 
radioactivity normalized to the integrated current for each irradiation. It is important to note that 
since the radionuclidic impurities showed a marked decrease for the first few irradiations on all new 
foils before reaching a relatively constant value, the first three 1,000 μAmin irradiations were 
omitted when producing the figure below. Evaluation of this figure reveals that tantalum is the only 
film which demonstrates radionuclidic impurity reducing characteristics similar to that of niobium. 
Based on strong correlations observed between the radionuclidic and ICP-MS measurements, we 
have concluded that trends noted in the radionuclidic impurities are reflective of trends in the ionic 
impurities. 

 
Table 1 summarizes the radionuclidic impurities 
(in units of mBq/µAmin at EOB) measured for the 
previously employed Nb-sputtered foil and the 
Ta-sputtered foil used on the production target. 
All values are reported as the average and 
standard deviation of the normalized activities. 
The integrated current (C) is reported as the total 
current on target prior to the test irradiations.   

Table 2 summarizes the [18F]FDG decay-corrected 
(DC) yields and end-of-synthesis (EOS) activities (A) 
obtained on the EPC's GE TracerLab MX synthesis 
unit for all syntheses performed up to the reported 
integrated current. A comparison of the average 
[18F]FDG DC yield (for comparable total integrated 
currents) demonstrates a 6.4 percent improvement (one-tailed t-test, p = 0.0025) with the Ta-
sputtered foil when compared with the previously employed Nb-sputtered foil.  

Conclusions: Compared with our current Nb-sputtered Havar standard, the Ta-sputtered Havar 
demonstrates a significant reduction in the Havar-associated impurities following prolonged use up 
to ~1,000,000 µAmin. In addition to decreased Havar-associated impurities, we have also noted an 
improvement in the [18F]FDG yields and yield consistency. Studies are currently underway to 
further evaluate this Ta-sputtered foil to a total integrated current of ~1,500,000 µAmin. 

Acknowledgements: This project was supported by the University of Alberta’s MicroSystems 
Technology Research Initiative (MSTRI). The authors would like to thank Dr. Chris Backhouse and 
Ms. Eva Sant for their helpful discussions in film selection, and for performing the film sputtering.  

Table 1 Nb Ta Ta
C [µAmin] 979,307 473,696 1,0002,546
Co-55 9748 ± 1621 37 ± 48 721 ± 238
Co-56 2038 ± 237 75 ± 27 171 ± 56  
Co-57 807 ± 98 5 ± 1 13 ± 4 
Co-58 9248 ± 1097 42 ± 6 120 ± 35 
Mn-52 9035 ± 1476 98 ± 41 111 ± 48 
Ni-57 2708 ± 394 18 ± 9 73 ± 18 

Table 2 Nb Ta
C [μAmin] 936,802 922,113
N 38 35 
Mean DC yield [%] 60.9 ± 11.7 67.3 ± 6.1
EOS Aaverage [GBq] 123 ± 26 139 ± 19 
EOS Amax [GBq] 171 184 
EOS Amin [GBq] 64 109 
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A simple calibration-independent method for measuring the beam 
energy of a cyclotron 

K. Gagnon1, M. Jensen2, H. Thisgaard2+, J. Publicover3++, S. Lapi3+++, S.A. McQuarrie1 and T.J. 
Ruth3 

1Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA 
2Hevesy Laboratory, Risoe-DTU, Technical University of Denmark, Roskilde, DENMARK 
3TRIUMF, Vancouver, BC, CANADA 
+Presently at PET and Cyclotron Unit, Odense University Hospital, Odense, DENMARK 
++Presently at University Health Network, Toronto, ON, CANADA 
+++Presently at Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA 

Introduction: When used for medical radionuclide production, both new and old cyclotrons need 
to have their beam energy checked periodically. This is not only part of good manufacturing 
practice and quality assurance but is also necessary for optimising target yields and minimising the 
radiation dose overhead of radionuclide production. As the production targets for most medical 
cyclotron configurations sit more or less straight on the vacuum tank with no room for beam 
diagnostics, an off-line approach for evaluating the beam energy of a medical cyclotron is required. 
Although beam monitor reactions have been extensively published, evaluated, and used for many 
years, the reliable use of these methods, at present, requires access to and knowledge of a well 
calibrated (typically HPGe) detector system.  

Aim: Develop a simple method for evaluating the beam energy of a cyclotron to an accuracy of a 
few tenths of an MeV without using complex data analysis methods or sophisticated equipment.  

Theory: To overcome the need for gamma spectroscopy and high quality efficiency calibrations, 
this study suggests the irradiation of two thin monitor foils of the same material interspaced by a 
thick energy degrader. By carefully selecting both the monitor foil material and degrader thickness, 
the differential activation of the two monitor foils may be used to determine the beam energy. The 
primary advantage to this technique is that by examining the ratio of two identical isotopes 
produced in the two monitor foils (e.g. 63Zn/63Zn) as opposed 
to, for example, the 62Zn/63Zn ratio resulting from proton 
irradiation of a single copper monitor foil, all detector 
efficiency calibration requirements are eliminated. The 
energy can thus be monitored by experimentally measuring 
the activity ratio and comparing this value with activity ratios 
predicted using published cross section data (σ) as given by: 

2

1

2

1

Foil

Foil

Foil

Foil

A

A




 . A sample plot of the predicted 63Zn activity 

ratio is given [right] for a 350 µm aluminum degrader, 25 µm 
copper monitor foils, and a 25 µm aluminum vacuum foil. 

Methods: The proposed strategy was evaluated using 25 µm natCu monitor foils, a 25 µm 
aluminum window, and an aluminum energy degrader for protons in the 11–19 MeV range on the 
Edmonton PET Centre’s (EPC) TR 19/9 cyclotron and the tandem Van de Graaff at Brookhaven 
National Lab (BNL). As the sensitivity of this technique depends upon the degrader thickness 
employed, this technique assumes prior knowledge of the beam energy (within ~ 1 MeV). The  
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degrader thicknesses employed in this 
study are given in the table [top right]. For 
the blind BNL measurements, the energy 
range was specified so that an appropriate 
degrader thickness could be selected. 

Prior to irradiation, the predicted activity 
ratios were determined using the IAEA 
recommended natCu(p,x)63Zn cross 
sections (www-nds.ipen.br/medical/) and 
simulations performed in the TRIM module 
of SRIM (www.srim.org), v.2008.04. From these predicted ratios, we present in the above table the 
coefficients (A, B, and C) necessary for determining the proton energy incident on the aluminium 
vacuum window, E(MeV) = Ar2+ Br + C, where r is the experimental 63Zn activity ratio measured 
between the front and back copper foil. In obtaining these coefficients we have assumed the 
presence of a 25 µm Al vacuum window, the Al degrader, and two 25 µm Cu monitor foils.  

Following irradiation, the 63Zn activity ratios were measured using CapintecTM CRC-15PET (EPC) 
and CRC-15W (BNL) dose calibrators set to an arbitrary calibration setting of 100. As 62Cu and 
62Zn production is also possible during irradiation of natCu, activity measurements were made at: (i) 
a single time-point roughly 1-hour post-EOB to ensure minimal 62Cu contribution, and (ii) multiple 
time-points from 20 minutes to 3 hours post-EOB where the 63Zn activity reading contribution was 
determined through exponential curve fitting to account for both the 62Cu and 62Zn contributions.  

Results: The table [bottom right] summarizes the 
incident energies evaluated using the 63Zn activity ratio 
measured using either the single 1-hour post-EOB time-
point or exponential stripping of the 63Zn activity 
contribution via curve-fitting. All energies are reported as 
the energy incident on the vacuum foil and were 
calculated using the coefficients provided above. The 
excellent agreement noted with the nominal energy for 
the 1-hr measurements up to 17 MeV suggests that half-
life discrimination is not necessary below this energy.  

Conclusions: The new, simple, calibration-independent 
method proposed for measuring the beam energy of a 
cyclotron was found to provide an accurate determination 
of proton energies in the 11–19 MeV range without the 
need for sophisticated equipment. To facilitate the 
adoption of this technique into routine evaluation of the 
cyclotron beam energy, we have included a look-up table of recommended aluminum degrader 
thicknesses as well as a list of the corresponding curve fit data for evaluation of the proton energy 
using the measured 63Zn activity ratio.  

Acknowledgements: The authors would like to thank Drs. Chuck Carlson, Michael Schueller, and 
David Schlyer for helpful discussions and organizing the experiments at BNL. This work was 
supported through a grant from NSERC.  

Assumed 
Energy 

Range [MeV] 

Al Degrader 
Thickness 

[μm] 
A B C 

10.8 – 11.8 350 1.3811 -6.8958 19.408 
12.0 – 12.8 500 0.7058 -4.0449 17.795 
13.0 – 13.8 625 0.5352 -3.1150 17.527 
14.0 – 14.8 750 0.5223 -2.7947 17.696 
15.0 – 15.6 875 0.5254 -2.5192 17.837 
15.8 – 16.4 1000 0.7218 -2.8021 18.380 
16.6 – 17.2 1125 1.1060 -3.3724 19.029 
17.4 – 18.0 1250 2.1607 -4.7938 19.934 
18.2 – 18.8 1375 4.5682 -7.3352 21.028 

E [MeV] 
Nominal 

E [MeV] 
1 hr 

E [MeV] 
Curve 

EPC 10.9 10.9 10.9 
EPC 11.1 11.2 11.2 
EPC 11.3 11.4 11.4 
EPC 11.6 11.6 11.7 
EPC 11.8 11.9 11.9 
EPC 13.8 13.8 13.9 
EPC 14.6 14.5 14.6 
EPC 15.4 15.4 15.5 
EPC 16.2 16.2 16.4 
EPC 17.0 16.9 17.2 
EPC 17.8 17.5 17.9 
EPC 18.6 18.1 18.5 
BNL 11.00 10.93 10.96 
BNL 13.50 13.47 13.45 
BNL 16.00 15.92 16.10 
BNL 18.00 17.56 18.17 
BNL Blind (12.3) 12.32 12.32 
BNL Blind (14.4) 14.36 14.42 
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Thermal modelling of a solid cyclotron target using finite element 
analysis: An experimental validation 

K. Gagnon, J.S. Wilson, and S.A. McQuarrie 

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA 

Introduction: Although radioisotope production yields may be increased by elevating the 
irradiation current, the maximum allowable irradiation current is often dictated by the thermal 
performance of a target. This limitation is commonly observed for solid targets as these materials 
often demonstrate poor thermal conductivities and low melting points. As we are interested in 
improving the power rating of solid targets by optimizing the shape and location of the cooling 
channels, we have investigated the use of finite element analysis to model both heat transfer and 
turbulent flow.  Before cooling optimization can be performed however, we needed to first validate 
our initial model. Such an experimental validation is the focus of this work.  

Methods: For the purpose of validating the finite element model, we have 
designed a target plate with a simplistic geometry. In order to perform on-
line real-time temperature measurements, this target plate is equipped with 
a thermocouple that extends to the centre of the plate [upper right]. Target 
plates of both copper and zirconium were constructed. These materials 
were selected for their markedly different thermal properties: copper is an 
excellent thermal conductor with a thermal conductivity, k, of 401 Wm-1K-1 

(@ 300 K), while zirconium is a relatively poor thermal conductor with k 
equal to 22.6 Wm-1K-1 (@ 300 K). The target plate and thermocouple were 
mounted into the water/helium cooled target assembly [lower right]. 
Irradiations were performed with proton currents up to 80 µA (17.5 MeV) 
for the copper plate and 50 µA (15.5 MeV) for zirconium. Both the beam tuning1 and target 
positioning were optimized to maximize the temperature readout. In calculating the power on the 
target plate, we have assumed a 10 percent beam loss to the target nosepiece/helium cooling 
chamber. Several low current measurements were also obtained without helium cooling as this 
source of cooling is not yet incorporated into the finite element model. 

The 3D heat transfer and turbulent flow of the cooling water were modelled using the COMSOL 
Multiphysics® v. 3.5a. steady-state general heat transfer and k-ε turbulence models, respectively. 
Experimental input parameters to the model include the cooling water temperature, cooling water 
flow rate, target plate/cooling water channel geometry, and a sample proton beam profile obtained 
using radiochromic film2. The temperature dependent material properties (i.e. thermal conductivity, 
density, heat capacity, etc.) were defined using COMSOL’s built-in material library.  

One of the primary challenges in developing the model was to accurately define the convective 
heat transfer at the water/plate boundary. Although COMSOL has built-in heat transfer coefficients 
for various geometrical configurations, at present these coefficients are limited exclusively to air 
cooling applications. To this end, three user-defined strategies were employed for evaluating the 
convective heat transfer coefficient at the water/plate interface.  

                                                            
1 See WTTC13 abstract: J.S. Wilson et al., A Simple Target Modification to Allow for 3-D Beam Tuning 
2 Avila-Rodriguez et al., Appl. Radiat. Isot., 2009, 67: 2025  
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The cooling geometry under consideration consists of a single 
central-inlet water-cooling channel and two water-outlets, all of 
which are perpendicular to the target plate [upper right]. 
Although the Dittus-Boelter and Sieder-Tate heat transfer 
formalisms are used to describe turbulent forced convection 
within long straight pipes (which is not representative of our 
geometric configuration), these two strategies were 
nevertheless investigated as both formalisms have been 
previously implemented and recommended for targetry applications3,4,5. The third model employed 
for evaluating the heat transfer coefficient (selected for its geometric similarity to our configuration) 
was a method characterized by Chang et al. for turbulent submerged liquid jets6. In all three 
strategies the Reynolds number was calculated from the temperature dependent water properties, 
the hydraulic diameter of the inlet water-cooling channel and the inlet water velocity, while the 
Prandtl number was calculated from the temperature dependent water properties. COMSOL’s non-
linear, direct (UMFPACK) parametric segregated solver was employed to evaluate beam powers 
ranging from 50–1300 W.  

Results: Three models were employed for characterizing 
the heat transfer at the water/plate boundary. Although all 
three strategies give rise to heat transfer coefficients 
whose magnitude increases as the cooling-water flow 
rate increases, when comparing the model predictions 
with experimental data [graphs, right], the results of this 
work suggest that the heat transfer in our geometric 
configuration is best described by the method proposed 
by Chang et al6. The poor performance of the Dittus-
Boelter and Sieder-Tate correlations has been attributed 
to the underlying geometric assumptions of these 
models. 

Conclusion: The experimental measurements performed 
in this study have allowed us to select a convective heat 
transfer model which is capable of accurately predicting 
the target plate temperature for materials with widely 
varying thermal properties. Future finite element 
investigations will include the introduction of helium 
cooling and the optimization of the cooling channel 
geometry for the purpose of improving the solid target power rating.  

Acknowledgements: The authors would like to thank Dr. Avila-Rodriguez for early development of 
the 3D target model. This project has been made possible through a grant from the Alberta Health 
Services and the Alberta Cancer Foundation. 

                                                            
3 Pavan et al., J. Radioanal. Nucl. Chem., 2003, 257: 203 
4 Avila-Rodriguez et al., Proceedings of the COMSOL Conference, 2007, 359. 
5 IAEA Technical Reports Series no. 465, Vienna, 2008 
6 Chang et al., Int. J. Heat Mass Transfer, 1995, 38: 833 
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RDS-111 to Eclipse HP Upgrading with Improvement in 18F Production 

A. Zarate-Morales, A. Flores-Moreno, J.C. Manrique-Arias, E. Zamora-Romo, M.A. Avila-
Rodriguez 

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, 
México, D.F., México 

The first PET Center in Mexico was inaugurated in 2001 at the School of Medicine of the National 
Autonomous University of Mexico (UNAM). In that time a self-shielded CTI RDS-111 cyclotron with 
targetry for the production of the main sequence CNOF radionuclides was installed. Nowadays, 
there are 3 compact cyclotrons in the country and 11 PET/CT cameras in different hospitals. 
UNAM´s cyclotron produces FDG for 6 of the 8 PET scanners located in hospitals and clinics of 
Mexico City, and more hospitals are planning to install more PET/CTs. To satisfy this increased 
demand of FDG, one of the beam lines of our RDS-111 cyclotron was recently upgraded to an 
Eclipse HP configuration. In this way, now we have a hybrid cyclotron with BL1 as Eclipse HP and 
BL2 as RDS-111. 
 
The main features of the upgrade include a new ion source that increased the beam current from 
40 to 60µA, a new four-position target carrousel capable to handle 60µA, high power gridded-
targets designed to be operated under high pressure conditions (>1000 psi), target body of 
refractory material (Ta) for the production of 18F, and installation of high vacuum butterfly valves    
to the diffusion pumps. In addition, the Eclipse HP beam line has no vacuum window, and 
therefore no helium recirculation cooling system. With this upgrade we practically double the yield 
of 18F with the same time of bombardment. Table 1 shows the yield of the different radionuclides in 
both versions while Table 2 summarizes our experience regarding 18F production. 
 

Table 1. Comparison of yields (EOB) obtained in RDS-111 vs. Eclipse HP targets. 
Radionuclide RDS-111 (40 µµµµA) Eclipse HP (60 µµµµA) 

18F- 1187 mCi (1h, 1200 µL H2
18O) 2300 mCi (1h, 2400 µL H2

18O) 
13N 146 mCi (10 min) 213 mCi (10 min) 
11C 1547 mCi (40 min) 1902 mCi (40 min) 

 
Table 1. Comparison of 18F production runs in RDS-111 vs. Eclipse HP targets. 

 Bombardment time AEOB of 
18F- AEOS of FDG Production runs 

RDS-111 747.2 h 536.4 Ci 271 Ci 506 
Eclipse HP 393.3 h 839.2 Ci 455 Ci 455 
HP/RDS 0.53 1.56 1.68 0.90 

 
The benefits of the upgraded BL were immediate for the production of 18F. The high volume Ta 
target produces more activity of highly reactive n.c.a. [18F]fluoride compared with the traditional Ag 
target of the RDS-111 configuration. We are still producing 18F in both targets using the Ta target 
for the heavy morning-production run, and the Ag target for the second and less heavy production 
run at midday. Other benefits of the upgrade include a faster (0.5 h vs. 4 h) recovery of the vacuum 
in case of the rupture of a window, and lengthened the maintenance intervals of the 18F target 
decreasing the radiation exposition to the cyclotron staff. Our plans for this year are to upgrade the 
second BL to the Eclipse HP configuration with the option for the irradiation of solid targets. 
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Conclusion: Benefits of the RDS Eclipse
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Title: CYCLOTECH – A method for Direct Production of 99mTc using Low 
Energy Medical Cyclotrons 

 

Authors: Johnson RR 1, Wm. Gelbart 2, Benedict M 3, Cunha L 4, Metello LF 4                                               

1 – Best Cyclotrons Systems Inc (BSCI - Team BEST), Ottawa, Canada and University of British 
Columbia, Vancouver, Canada;                     

2 – Advanced Systems Design (ASD), Garden Bay, Canada; 

3 - Molecular Diagnostics and Therapeutics Inc. (MDTI), Longmont, Colorado, USA; 

4 – Isótopos para Diagnóstico e Terapêutica SA (IsoPor SA), Porto, Portugal and Nuclear 
Medicine Department of the High Institute for Allied Health Technologies of Porto, Polytechnic 
Institute of Porto (ESTSP.IPP), Porto, Portugal. 

 

Introduction: 

This paper presents work in progress, to develop an efficient and economical way to directly produce 

Technetium 99metastable (
99m

Tc) using low-energy – so-called “medical” – cyclotrons. Its importance is well 

established and directly relates to the increased global trouble in delivering   
99m

Tc to Nuclear Medicine 

Departments relying on this radioisotope.   Since the present delivery strategy has clearly demonstrated its 

intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low 

energy cyclotrons and the accessibility of Molybdenum 100 (
100

Mo) as the Target material.  This is indeed 

an important issue to consider, since the system here presented it is not based on the use of HEU (or even 

LEU) 235 Uranium, so entirely complying with the actual international trends and directives concerning the 

use of this potentially critical material. 

The production technique is based on the nuclear reaction 
100

Mo (p,2n)
 99m

 Tc  whose production yields 

have already been documented.  

The object of the system is to present 
99m

 Tc to Nuclear Medicine radiopharmacists in a routine, reliable and 

efficient manner that, remaining always flexible, entirely blends with established protocols. 

 

Material and Methods: 

We have developed a Target Station that can be installed on most of the existing PET cyclotrons and that 

will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately 

oblique angle.  The Target Station permits the remote and automatic loading and discharge of the Targets 

from a carriage of 10 Target bodies. 

69

kmje
Typewritten Text
Abstract 013

kmje
Typewritten Text



 
 

Fig1. The remotely controlled Target Changer ejects the irradiated Target (to a Transfer System 

that transports it to a Processing Unit –inserted in a dedicated Hot Cell) and loads a new one. 

Up to 10 Targets can be pre-loaded in the Target Changer. 
 

Several methods of Target material deposition and Target substrates are presented.  The object was to 

create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) 

with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam 

currents. 

The separation techniques presented are a combination of both physical and column chemistry.  The object 

was to extract and deliver 
99m

Tc in the identical form now in use in radiopharmacies worldwide.  In addition, 

the Target material is recovered and can be recycled. 
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Effects of the Tantalum and Silver Targets on the Yield of FDG 
Production in the Explora and CPCU Chemistry Modules 

J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-Moreno, M.A. Avila-
Rodriguez 

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, 
México, D.F., México 

Ionic contaminants in water have generally been considered to influence the reactivity of n.c.a. 
[18F]fluoride decreasing the yield in the synthesis of radiopharmaceuticals by nucleophilic 
fluorination. Until a few years ago the most widely used material for target chamber in 18F- 
production was silver. However, more recently, the use of refractory materials such as tantalum 
and niobium has been shown to provide highly reactive fluoride. 
 
The PET Center at the National Autonomous University of Mexico (UNAM) produces [18F]fluoride 
ion for FDG synthesis in two different targets: a high volume (2.4 mL) gridded tantalum-target and 
a low volume (1.2 mL) double-foil silver-target capable to withstand 660 and 440W of beam power 
at 11 MeV, respectively. Chemistry modules for FDG production at this facility include an Explora 
recently acquired to replace a CPCU in use since 2001. The Explora module is used primarily for 
the routine production of FDG while the CPCU serves as a backup for the Explora and for the 
production of other non-FDG tracers. Figure below shows the yields of FDG in six-consecutive 
months using a tantalum and a silver target for fluoride production. The FDG yields when using the 
silver target range from 60 to 70% compared to 70 to 80% when using the tantalum target, clearly 
showing the superiority of tantalum vs. silver to produce highly reactive fluoride. 
 

 
Figure 1. Six-month FDG yields in the Explora module using 18F from two different targets. 

 
Regarding the use of the Explora and CPCU modules, we found no significant difference in their 
FDG yields, independently of the target used for fluoride production, and their synthesis time is 
practically the same (∼45 min). However, the Explora features a single closed reaction vessel with 
heating/cooling by forced convection including temperature, pressure and radiation sensing. 
Performs up to four sequential runs of FDG without intervention. On the other hand, the CPCU 
features two open reaction vessels heated by two independent oil baths that can be used for back-
to-back synthesis, but it lacks of any kind of sensors to monitor the performance of the synthesis. 
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FULLY AUTOMATED SYSTEM FOR THE PRODUCTION OF [123I] AND [124I]-IODINE 

LABELLED PEPTIDES AND ANTIBODIES.  

P. Bedeschia, S. Bosia, M. Montronia, G.Brinib, S.Cariab, M.Fulvib, G. Calisesib 

a Comecer, Castel Bolognese (RA), Italy 

a Nuclear Specialists Associated, Ardea (Roma), Italy. 

 

Radiolabelled amino acids, peptides and monoclonal antibodies are certainly a useful non- invasive 

diagnostic tools to detect malignant tumours, infectious and inflammatory lesions 1,2. In combination 

with the potential of Positron Emission Tomography (PET), the aim of the present study was to 

develop a fully automated system for the radiolabelling of these new tracers, that avoids any direct 

manipulation by operators from target production and recovery, to synthesis and purification of the 

final product. 

Nowadays radionuclides used for PET-imaging are generally short- lived isotopes, such as [18F]-

fluorine (t1/2 = 110 min), but recently the growing need for alternative positron emitters focuses the 

attention on the long- lived radiohalogen [124I]-iodine (t1/2 = 4.17 d). [124I]-Iodine, is a suitable 

radionuclide  for both diagnostic, such as Positron Emission Tomography and therapeutic 

applications, it decays by positron emission (23.3%) and electron capture (76.7%). Its long half- life 

permits this isotope to be imaged for more than 4 days, which makes it possible to study the labeled 

molecule over a longer time period. Furthermore the promising clinical aspect of [124I]-iodine leads 

research institution and commercial company seeking to produce multi-millicurie quantities for 

distribution purposes3, that means a wider geographical area.  

A variety of radioiodination methods is supported by a large amount of literature 4,5, preferentially a 

radioiodine atom is incorporated in a vinylic or aromatic moiety, due to the high strength of the 

carbon-iodine bond.  Therefore, the radioiodination is often implemented by nucleophilic or 

electrophilic substitution and is more or less predicted by the structural feature of the molecule 6. 

Obviously this kind of chemistry is applicable to any iodine isotopes, therefore  in addition to [124I]-

iodine, our attention is focused on [123I]-iodine too. 

[123I]-Iodine has a half- life of 13.2 h, decays by electron capture and its medium energy (Eγ = 159 

keV) is ideal for planar imaging and for Single Photo Emission Computed Tomography (SPECT),  

a lower cost diagnostic tool compared to PET. 

The production of both [123I] and  [124I]-iodine radionuclides is based on a low-energy (p, n) 

reaction at a small-sized (14 MeV) cyclotron, using TeO2-target technology and dry distillation 

                                                                 
1
 Journal of Labelled Compdounds & Radiopharmaceuticals, 2008, 51, 48-53 

2
 International Journal of Cancer, 19991, 47, 3, 344-347 

3
 Applied Radiation and Isotopes, 2007, 65, 407-412 

4
 Bolton, 2002; Glaser et al., 2003; Adam & Wilbur, 2005 

5
 Bioconjugate Chem., 1990, 1, 154-161 

6
 Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 241-257 
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method of radioiodine separation7,8,9,10.  The collected radioiodide is then delivered to a fully-

automated module for the product labeling.  The module is built with the concepts of the 

“disposable cassette”, so all the components that get in contact with the product are disposable; this 

structure avoids the module contamination. Finally the labeled compounds are allowed to pass 

through an HPLC purification system connected at the end of the synthesis module.  The figure 1 

below shows a schematic illustration of the fully automated process.  

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic illustration of the fully automated system 

 

In conclusion we develop a fully automated system for the high activity production of iodo- labelled 

peptides and monoclonal antibodies, high- lived pharmaceuticals for PET and SPECT imaging. Due 

to the automated process applied from the radio- isotopes production and separation to the synthesis 

and purification of the final products, the operators are completely shielded from radiation. The use 

of [123I] and [124I]-iodine, medium and high - lived radionuclides permits longer term studies and a 

wider geographically distribution. 

 

 

 

                                                                 
7
 Applied Radiation and Isotopes, 2003, 58, 69-78 

8
 Radiochim. Acta, 2000, 88, 169-173 

9
 Applied Radiation and Isotopes, 2007, 65, 407-412 

10
 Journal of Radioanalytical & Nuclear Chemistry, 1996, 213, 2, 135-142 
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AIM
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The purposes of an autom
ated system

 
for radio‐iodine production are:

•
to increase radioprotection standards of the operator during the process

•
to obtain high production yields for sm

all cyclotrons and to assure the 
process reproducibility 

•
to assure a good product quality in term

s of chem
ical and isotopic purity

•
to establish a background for a future GM

P production
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Target transfer speed: 2 m
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Beam
 Energy 14 M
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 4 to 6 hours

Typical production yield w
ith 500 m

g of  124TeO
2 (99.5%
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Routine Automated Production of 18F-Labelled Radiopharmaceuticals 
on IBA Synthera® Multi-Purpose Platform 

Bernard Lambert1 ; Jean-Jacques Cavelier1, Guillaume Gauron1, Christophe Sauvage2, Cécile 
Kech2, Tim Neal3, M. Kiselev3, David Caron4, Anat Shirvan4, Ilan Ziv4 

1BP 32 91192 Gif sur Yvette Cedex France. 2IBA RI SA, rue de l'Esperance, 1 6220 Fleurus 
Belgium. 3IBA Molecular, 100 Executive Dr. Sterling VA USA; 4Aposense Ltd, 5-7 Odem St., P.O 
Box 7119, Petach-Tikva 49170, Israel  e-mail: christophe.sauvage@iba-group.com. 

Although FDG provides most of the clinical PET imaging today its low specificity limits its use. In 
molecular imaging technology, highly specific probes for clinical applications are crucial justifying 
the development of non-FDG radiopharmaceuticals such as: [18F]-NaF, for bone metastasis 
detection; [18F]-F-Choline ([18F]-FCH=methylcholine) for diagnosis/staging of prostate cancer; [18F]-
FLT, for cell proliferation imaging, and [18F]-ML-10 (α-methyl 18F-alkyl-dicarboxylic acid), for 
apoptosis imaging. This work will present automated and optimized processes developed on IBA 
Synthera® platform for the routine production of [18F]-NaF, [18F]-FCH, [18F]-FLT, [18F]-ML-10. 
The synthesis of each radiotracer takes place on single-use IFP™ system (integrated fluidic 
processor) which comprises appropriate pre-defined synthesis hardware and plumbing. [18F]-NaF 
manufacturing is straightforward and employs IFP™ Chromatography. For the [18F]-FCH, two 
synthesizers as well as two interconnected IFP™ (IFP™ Distillation & IFP™ Alkylation) are 
necessary for the two-step synthesis (fig.1). In synthesis of [18F]-FLT and [18F]-ML-10 IFP™ 
Nucleophilic is used. The product obtained is purified in Synthera® HPLC unit. In none of the 
applications hardware changes are required compatible with a multipurpose platform.  

 

Fig 1-Synthera® graphical user interface screen-shots for [18F]-FCH highlighting main features. 

The synthesis of [18F]-NaF is obtained by washing trapped [18F] with water followed by elution with 
saline solution. [18F]-FCH is produced in two steps according to published method1. The first step, 
performed in IFP™ Distillation, includes the fluorination of dibromomethane (DBM) and purification 
of fluorinated volatile by distillation through silica cartridges. Next, in the IFP™ Alkylation, 
fluoromethylation of N,N-dimethylaminoethanol takes place resulting in [18F]-FCH which is purified 
through a cation exchange cartridge. [18F]-FLT is produced according to adapted methodology2. 
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The synthesis is realized within IFP™ Nucleophilic. [18F]-fluorination of 3-N-Boc-5’-O-
dimethoxytrityl-3’-O-nosyl-thymidine (Boc-FLT-Precursor) as well as subsequent acid hydrolysis 
with diluted HCl are carried out at 100°C. These steps take 10 min. and 5 min., respectively. Crude 
product is buffered and loaded into reversed-phase HPLC column in Synthera® HPLC for final 
purification. Ethanol/water is used as mobile phase. Synthesis of [18F]-ML-10 also employs IFP™ 
Nucleophilic. Both fluorination of the tosylated precursor and consecutive hydrolysis with aqueous 
HCl were performed at 110°C for 10 min. Buffered reaction mixture was then purified  in Synthera® 
HPLC by reversed-phase HPLC with phosphate buffer/ethanol as mobile phase. 

[18F]-NaF is obtained in less than 10 minutes with RCY (radiochemical yield) > 90% EOS. 
Analytical data show it complies with European Pharmacopoeia. Average RCY for [18F]-FCH >20% 
EOS. The total synthesis time is < 50 minutes. Final product shows high radiochemical purity 
(99%) and chemical purity (>95 %). [18F]-FLT total synthesis time is 45 minutes (including HPLC 
purification) with average RCY>20%. Final product presents high radiochemical purity (>95%) and 
high chemical purity (>95 %). [18F]-ML-10 RCY > 40 % after 60 min of total synthesis time including 
HPLC purification. Final product presents high radiochemical and chemical purity (> 99%) (fig 2). 

 

Radio 

UV 206nm

Fig. 2- Typical chromatogram of [18F]-ML10 after HPLC purification 

The automated platform has proven to be robust and reliable when it comes to routine production 
of promising radiopharmaceuticals such as [18F]-NaF, [18F]-FCH, [18F]-FLT and [18F]-ML-10 for 
clinical applications. The radiochemical yields obtained are reproducible and final products show 
high radiochemical and chemical purity. All of the radiopharmaceutical syntheses are carried out 
within dedicated IFP™ systems (Chromatography, Distillation, Alkylation and Nucleophilic) in one 
single platform set up with open software for customized applications. The IFP™ is a disposable, 
preventing cross-contamination, which is line with GMP. The modules are fully interchangeable 
underpinning the platform multipurpose capability (do-all-in-one platform) and flexibility.  

References: 
1Kryza D et al Nuc.Med.Bio. 35:255 – 260 (2008) 
 2Oh SJ, et al Nuc.Med. Bio. 31:803–809 (2004). 
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Routine Production of Cu-61 and Cu-64 at the University of Wisconsin 

Jonathan W Engle, Todd E Barnhart, and Robert J Nickles 

University of Wisconsin, Madison, USA 

The application of copper isotopes in PET research has undergone a dramatic rise, driven by their 
versatile chelation chemistry, favourable decay characteristics, and national distribution potential. 
The (p,n) reaction has long been used to produce 61Cu and 64Cu from 61Ni and 64Ni with reported 
yields of 21.4 ± 2.2 mCi/uA/hr and 8.7 ± 0.4 mCi/uA/hr at 11 MeV, respectively.1 The 64Ni(p,n)64Cu 
reaction in particular necessitates careful consideration of incident particle energy. 
Electrodeposition of enriched 61Ni and 64Ni target material onto high purity gold or silver blanks has 
been described previously and appears to be limited to approximately 80-120 mg/cm2, by time and 
cost concerns.  

Using the pooled cross section data σ(E) for the 64Ni(p,n)64Cu reaction,2 the end of saturated 
(EoSB) yield of 64Cu can be predicted as a function of 64Ni thickness and incident beam energy, 
shown below. This family of yield curves strongly suggests that very thick targets (≈ ½ gram/cm2; 
≈$10,000 in 64Ni inventory) are needed to take advantage of proton energies above 11 MeV, being 
prohibitive both in cost and plating time. We have degraded the 16 MeV incident proton energy of 
the PETtrace to approximately 12 MeV with a 0.23 mm tantalum foil to improve the efficiency of our 
production runs. However, it is apparent that our legacy CTI RDS 112 is still far better suited for the 
weekly production of 64Cu at the 0.5 Ci level for our own needs, as well as national distribution of 
the excess.  
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 EoSB 64Cu Yields (mCi/uA) vs Proton Beam Energy (MeV)
(by amount of target Nickel-64)
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Copper-61 offers several advantages over 64Cu for PET imaging, namely 61% vs 20% β+ 
branching and a 3.4 hr vs 12.7 hr half-life, which combine to result in a three-fold greater useful β+ 

flux to absorbed radiation dose ratio for trapped agents. Three reactions present themselves for 
cyclotron facilities without alpha beams: 61Ni(p,n)61Cu, 60Ni(d,n)61Cu, and 64Zn(p,α)61Cu. With the 
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recent three-fold price increase of enriched 61Ni, we have reverted to the 60Ni(d,n)61Cu  reaction for 
protocols needing Cu-ATSM for hypoxia imaging in human and veterinary patients.3 Human 
studies use enriched 60Ni plated on gold discs. Animal studies, with more relaxed specific activity 
requirements (>300 mCi/µmole), can utilize the deuteron irradiation of natNi targets, obviating the 
need for recycling of enriched target stock. The HPGe spectrum below testifies to the radionuclidic 
purity of the 61Cu. Electroplated and foil targets are dissolved in HCl at 100s C, accelerated with 
H2O2. Alternatively, biasing the Ni foil (10 volts, 1 amp) in unheated concentrated HCl removes 
approximately 40 mg of the foil and >90% of the activity in 3 minutes.4 The dissolution apparatus is 
identical to the electroplating setup. These platers have been recently improved, adding flow, 
temperature control, pulsed voltage and current regulation under LabView control.  

As more subtle targeting strategies develop, the chelation of copper radionuclides to molecular 
imaging candidates will permit PET to determine the best lead compound, significantly shortening 
the time to achieve diagnostic utility. Any improvements in the supply of 61Cu and 64Cu will greatly 
serve that end.   
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1 Avila-Rodriguez M A (2007). Low energy cyclotron production of multivalent transition metals for 
PET imaging and therapy. Ph.D. Dissertation University of Wisconsin Press, Madison, WI.   

2 Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods (2009). 
IAEA Technical Reports Series No. 468. IAEA Press, Vienna, Austria. 	
  

3 Tolmachev V, Lundqvist H, Einarsson L (1998). Production of 61Cu from a natural nickle target. 
Applied Radiation Isotopes, 49(1-2), 79-81.	
  	
  

4 Martin C C, Oakes T R, Nickles R J (1990). Small Cyclotron Production of Cu-60 PTSM for PET 
Blood Flow Measurements. J Nucl Med 31, p815.	
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Sustainable PET tracer production at Wisconsin 

Todd E Barnhart1, Jonathan W Engle1, Peter Larsen2, Bradley T Christian3, Dhanabalan 
Murali1, Dustin Wooten1, Onofre T DeJesus1, Ansel Hillmer1, and Robert J Nickles1 

1University of Wisconsin, Madison, USA 
2Scansys, Copenhagen, Denmark 
3Waisman Institute for Brain Imaging and Research, Madison, USA 

Introduction 

The University of Wisconsin PET tracer production facility has evolved over four decades, 
progressing from an EN tandem (1971), the first CTI RDS 112 (1985), an NEC pelletron (1998) 
and now, a GE PETtrace, bunkered in a new facility. Balancing a mixed assignment of graduate 
training, basic and clinical research, our emphasis has centered on achieving a sustainable 
campus-wide resource, free from unrealistic expectations or crippling service contracts. The 
foundation of this self-support is inherent in the state-audited charge-back account within the 
autonomy of the Medical Physics Department, where users cover the fair share for the 
development and production of the tracers that they request.  

Targetry 

We have continued the Wisconsin tradition of making our own cyclotron targets on the new GE 
PETtrace.  Helium cooling has been cast aside in favour of single, gridded entrance windows.  The 
[18F]-fluoride target’s niobium body houses a 1.1 mL target volume behind a havar window with a 
water-cooled grid support described previously.1 The [13N]NH3 target is a 304 stainless steel 
volume of 2.5 mL also behind a havar foil and grid. A 3 mL/min flow of 5 mM EtOH provides a 
steady state production of [13N]NH3 trapped on an Alltech IC-Na Plus cartridge. [11C]CO2 and 
[11C]CH4 targets are electropolished 304 stainless steel tubes (25 cm x 1.6 cm dia.), TIG welded 
inside the water-jacket.  These targets are also sealed to the vacuum by the same havar foil /grid 
system.  All grids are approximately 2.5 cm deep with hexagonal holes (2.5 mm across the flats, 
0.3 mm septa) electric discharge-machined into aluminum. 

Automated chemistry 
 
 [18F]-fluoride, [13N]-NH3, [11C]-CO2, and [11C]-CH4 are transported to shielded radiochemistry 
equipment in the lab adjacent to the vault through narrow bore lines. Aqueous fluoride and C-11 
carbon dioxide or methane are remotely unloaded via FEP and stainless steel lines, respectively, 
and sent to two Capintec (New Jersey) hot cells, each containing a Labview-controlled Scansys 
(Copenhagen) automated radiochemistry module. [11C] activity can also be piped to the Waisman 
Institute for Brain Imaging and Research via a “tuned”2 300 meter underground PTFE pipeline. 
Each Scansys module contains a syringe pump-fed 2-dimensional robot with access to reagent 
vials, two thermally heated, air-cooled reactors, and a microwave module. Customized inserts 
permit reaction vessels to range in size from 500 uL to 7 mL. Robotic access is provided to 
additional reagents through 4 banks of 3-way valves, a needle cleaning station, and HPLC injection 
loop. Three Rheodyne TitanEX 7-port selector valves direct flow through cartridges for in-line 
separations and filtration, all monitored by miniature Centronix ZP1300 GM tubes. The HPLC 
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system supports up to 5 separate columns via additional switching valves and includes a column 
heater as well as a linear scanner gamma viewing any column with one of 8 included ZP1300 
(Centronic) GM tubes. Following HPLC purification, the Scansys module also includes a custom 
evaporator which is capable of removing 10 mL water in ~ 1 min. for reconstitution in appropriate 
solvents. Drydown, as well as fluid movement throughout the module, can be accomplished with 4 
MFC-regulated gas channels, currently plumbed and calibrated for argon, nitrogen, and helium 
flow. Each module also contains two vacuum pumps capable of pulling approximately 50 mL/min 
through 1 m of 1/16” ID tube.  
 
To date, we have successfully automated syntheses of [18F]FLT, [18F]FES, [11C]MHED and 
[11C]DTBZ for animal studies on these systems. Yields are comparable to those obtained with our 
prior manual chemistries. For [18F]FLT, yields average 10.1 ± 5.1% (decay corrected to QMA 
trapping, using 10 mg 3-N-Boc ABX precursor) with specific activities of 3.7 ± 1.8 Ci/umol (n=30). 
[18F]FES yields average 16.9 ± 4.2% (decay corrected to QMA trapping, using 2 mg ABX 
precursor) with 3.8 ± 1.5 Ci/umol (n=4). Syntheses of [18F]FMISO are planned to follow.  
 
Conversion efficiency from [11C]CH4, produced in-target, to [11C]MeI by recirculating loop in the 
new module is 70.0 ± 0.4% (n=28). Automated syntheses of [11C]MHED and [11C]DTBZ on the 
Scansys module average yields of 16.0 ± 5.8% (n=11) and 36.3 ± 11.6% (n=3) respectively (decay 
corrected to methylation). Specific activities for both syntheses, decay corrected to EoB, are 8.4 ± 
0.3 Ci/umol. [11C]WAY, produced manually from the [11C]CO2 target, averages 1.4 ± 0.6 Ci/umol at 
end of synthesis (n=8); decay correction puts EoB specific activity from this target at 9.8 ± 3.3 
Ci/umol.  
 
Conclusion 
 
The natural evolution of production capacity at Wisconsin has been driven by the increased 
demand for PET tracers for molecular imaging, both in basic research and in the clinic. The new 
PETtrace, bunkered in new facilities, easily handles the call for conventional radionuclides, freeing 
up the legacy prototype CTI RDS 112 for a new life concentrating on the production of 64Cu for 
distribution,18F2 for electrophilic fluorination (F-DOPA, FMT), and target development for the 
production of orphan isotopes.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

1 Roberts A D, Armstrong I S, Kay B P, Barnhart T E (2004). Improved strategies for increased 
[18F]F- yield via the 18O(p,n)18F reaction with thin target windows and bodies. Presentation at the 
10th Semi-Annual Workshop on Targetry and Target Chemistry, Madison, WI.  

2	
  Hichwa R D and Nickles R J (1979). The tuned pipeline: A link between small accelerators and 
nuclear medical needs.  IEEE Transactions on Nuclear Science 26, 1707-1709. 
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Production of Cl-34m via the (d,α) reaction on Ar-36 gas at 8.4 MeV. 

Jonathan W. Engle, Todd E. Barnhart, Onofre DeJesus, and Robert J. Nickles 

University of Wisconsin, Madison, USA 

Introduction 

The radioisotope 34mCl (β+, t1/2=32.2 m) is of interest to the medical community, especially in drug 
development. However, 34mCl production is currently limited to facilities capable of accelerating 
alpha particles.1 Proton-only accelerators can make use of reasonable yields for enriched 34S 
targets, but must contend with the poor thermal and electrical properties of sulphur and its 
compounds, which reach the molten state at even limited beam currents. The utility of the 
20Ne(d,α)18F reaction2 suggests an alternative route to 34mCl via the corresponding noble gas, 
argon. The excitation function and yield measurements for 36Ar(d,α)34mCl near 8.4 MeV, the 
nominal deuteron energy on a PETtrace cyclotron, elude a careful search of the literature.  

Test Irradiations of natArgon 

A gas target (21 cm x 1.4 cm ID) was built with removable endplates for rapid removal of a quartz 
tube with trapped 38,34mCl- from 40,36Ar(d,α). Exploratory deuteron irradiations were conducted on a 
thick target of natAr 130 psig. Following irradiation, the target was “cooled” briefly to allow the 
overwhelming 511 keV gammas from 16O(d,n)17F in the quartz tube to decay and then flushed 
twice into a 1 L syringe to remove 41Ar prior to target disassembly and analysis. The quartz tube 
was removed and assayed with an HPGe detector (spectra shown below). Gamma spectroscopy 
revealed the production of 0.9 ± 0.1 mCi/uA of 38Cl (t1/2=37.2 m) and 5.1 ± 0.4 mCi/uA of 41Ar 
(t1/2=109 m) at end of saturated bombardment (EoSB). More importantly, the production of 34mCl in 
approximately 1:300 ratio with 38Cl mirrors the abundance ratios of their target isotopes.  

Yield Measurements with 36Argon 

Enriched 36Ar (99.993%, 1 L at STP) was obtained from Isoflex (San Francisco). The high cost 
(~$5000/L) of the target material necessitated cryotrapping 36Ar post-irradiation in a 50 mL 
stainless steel vessel.3 Vacsorb greatly improved the cryorecovery of argon at -196°C (<1 mm Hg) 
compared to vapor pressures achievable in its absence (0.3 atm), in agreement with the Clausius-
Clapeyron relation’s prediction. A second target (21 cm x 1.9 cm ID) better accomodated the width 
of our deuteron beam, albeit at some cost in target pressure. The 36Ar-filled target was irradiated at 
an initial pressure of 68 ± 1 psig by beam currents between 5 and 20 uA for 30 minutes. After the 
run, 10 minutes of cryotrapping recovered >99.5% of target material at -196°C. The target was 
vented and the quartz insert removed for analysis. To date, 12 irradiations have been completed, 
revealing radionuclidically clean production of desired 34mCl trapped in the quartz tube. EoSB yields 
and decay over more than 3 decades are shown below, averaging 1.8 ± 0.2 mCi/uA for thick-target 
runs, reflecting the larger ID target’s accomodation of the PETtrace deuteron beam. The target 
appears to thin beyond 10 uA, reducing effective yield. Phosphor plate imaging of the quartz tubes’ 
adsorbed activity confirms this hypothesis, as the activity peak progresses steadily towards the 
back of the target with increased beam currents.  
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Conclusion 

These results suggest the possibility of subsequent labeling with 34mCl; nucleophilic test reactions 
to confirm the reactivity of the product will follow.  
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1 Takeia M b, Nagatsua K, Fukumuraa T, Suzuki K (2007). Remote control production of an 
aqueous solution of no-carrier-added 34mCl− via the 32S(α,pn) nuclear reaction. Applied Radiation 
and Isotopes 65(9), 981-986. 
 
2 Casella V R, Ido T, Wolf A P, Fowler J S, MacGregor R R, Ruth T J (1980). Anhydrous F-18 
labeled elemental fluorine for radiopharmaceutical preparation. Journal of Nuclear Medicine, 21, 
750-757.   
 
3 Nickles R J, Daube M E, and Ruth T J (1984). An 18O2 target for the production of [18F]F2. 
International Journal of Applied Radiation Isotopes 35(2), 117-122.  
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OPTIMISATION OF AN ELECTROPLATING PROCESS TO PREPARE A 
SOLID TARGET FOR (p,n) BASED PRODUCTION OF COPPER-64  
 
C. Jeffery1,2, S. Chan1, D. Cryer1, A. Asad1, RAPID Group1; R.I. Price1,3 
 

1Medical Technology and Physics, Sir Charles Gairdner Hospital; 2Chemistry & 3Surgery, 
University of WA, Perth, Western Australia 
 
Introduction 
Research into the production of copper-64 from a nickel-64 solid target utilising a semi-automated 
solid target assembly coupled to an IBA 18/9 MeV proton cyclotron is ongoing. The target is 
prepared using an electroplating method adapted from McCarthy et al (1997), which uses a 
solution of nickel ammonium sulfate (adjusted to pH 9 with ammonium hydroxide) to plate nickel 
onto a gold substrate. While this method of production is sometimes very successful, it has also 
proved unreliable, producing poorly plated disks in approximately 50% of experiments. The 
irregularities observed in the nickel surface include - flaking, crazing, formation of spheres or pits, 
loose/powdery Ni, poorly adhered Ni, a lack of ‘lustre’ and a black deposit forming on the anode. 
An article from Kim et al (2009) described the black anode deposit, and suggested that ammonium 
hydroxide and/or ammonium sulfate added to counter residual acidity in the nickel ammonium 
sulphate solution was the cause. Kim et al suggested an electroplating method to resolve this 
issue. Further work was carried out to optimise our electroplating procedure, based on their 
method.  
  
Aim 
To develop a method that reliably and reproducibly generates a solid target for copper-64 
production by electroplating nickel-64 onto gold; and to optimise the electroplating conditions to 
enable maximum nickel deposition for minimal time and use of nickel-64. 
 
Method 
Preparation of purified NiSO4 [adapted from Kim et al (2009)] 
Nickel metal is dissolved in nitric acid and evaporated to dryness. The solid is treated with sulfuric 
acid and dried to a yellow solid. The residue is dissolved in milliQ water and recrystallised by 
adding acetone. The solid is collected by vacuum filtration, and dried over vacuum for two hours, 
followed by drying in an oven at 120°C for a minimum of two hours. The resulting yellow-green 
solid is NiSO4.  
 
Preparation of electroplating solution 
Purified NiSO4 (0.13770g to 0.30079g) was dissolved in milliQ water (5mL, 10mL, or 15mL). 
Ammonium sulfate (~0.06g) was also dissolved into the solution. 
 
Electroplating experimental conditions 
Anode: initially carbon rod (rotating), then platinum rod (non-rotating) 
Cathode: initially 2mm x 20mm gold disk, then 125µm x 15mm gold foil 
Solution: initially nickel ammonium sulfate, pH 9, with ammonium sulfate buffer, Ni concentration 
~3mg/mL (McCarthy et al, 1997); then nickel sulfate, pH 4.5, with ammonium sulfate buffer, Ni 
concentration ~5mg/mL (Kim et al, 2009) 
Plating area: 10mm diameter, 78mm2 
Current: Constant 6mA 
Time: 12 hours (10 experiments, varying masses of NiSO4), plus 6 experiments with time varied 
from 12-96 hours (constant mass of NiSO4) 
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Results 
16 experiments were conducted with nickel sulfate - 14 considered were successful.  
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Figure 1: Mass of nickel plated versus 

electroplating time (constant concentration of 
nickel in solution, 150mg NiSO4 in 10mL) 

Figure 2: Mass of nickel plated versus 
concentration of nickel in electroplating solution 
(for constant electroplating time, 12 hours) 

 
Discussion and Conclusion 
Fourteen of the 16 NiSO4 experiments resulted in a lustrous, well-adhered layer of nickel, with no 
black residue on the platinum anode. The two failures were the result of variation in the constant 
current applied to the cell, and a change in the volume of water (increased to 15mL). Some divots 
have been observed in the nickel surface, indicating that bubbles have adhered to the surface 
during plating, but they are small and not considered a defect. The electroplating solution is stable 
over time (ie. no precipitate formed), and it is easy to prepare. The average yield of nickel plated 
using NiSO4 is much lower than that achieved with Ni(NH4)2.2SO4 (37-63%, versus ~70-95%), 
which is a disadvantage. 
 
Effect of time (constant NiSO4 concentration): Figure 1 shows the amount of nickel plated plateaus 
rapidly. Doubling the time (12 to 24 hours) results in a 1.1x increase in Ni plated, while quadrupling 
the time (12 to 96 hours) only results in 1.7x more nickel plated. Run times less than 24 hours are 
therefore most efficient.   
 
Effect of varying NiSO4 concentration (constant time): Figure 2 shows a low yield was achieved 
using a volume of 5mL. One experiment using 15mL of water resulted in a poor nickel surface 
despite a reasonable amount of nickel plated. The best yield with minimal amount of nickel in 
solution was achieved with a 10mL solution of 8.5mg/mL of nickel.  
 
Overall, we are satisfied with the reliability and reproducilbility of our method.  
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Streamlined measurement of the specific radioactivity of in 
target produced [11C]methane by on-line conversion to 
[11C]hydrogen cyanide. 
 
1) Jacek Koziorowski and  2) Nic Gillings 
 
1) Herlev Hospital Copenhagen University, Denmark, 2) Copenhagen University 
Hospital, Rigshospitalet 
 
 
Abstract 
 
A simple method for the direct measurement of in-target produced [11C]methane 
specific radioactivity is described. The method is also suitable for the production of  
[11C]cyanide for radiosynthesis. Specific activities up to 13 000 GBq/μmol are 
reported. 
 
 
Introduction 
 
For monitoring and optimization of the specific radioactivity of in-target produced 
[11C]methane it is desirable to have a simple method for measurement of the mass of 
carbon without having to performed a complete radiosynthesis.  Quantification of 
[11C]methane using gas chromatography (GC) is rather cumbersome and if using a 
flame ionisation detector (FID) it is necessary to wait until the activity has decayed 
before performing the measurement.  Such a delay gives rise to the possibility of 
losses of methane, thus leading to an over-estimation of the specific activity.  
Furthermore, a reliable measurement of such small masses of methane is 
challenging. 
 
[11C]hydrogen cyanide can be easily produced on-line from [11C]cyanide by passing 
over platinum at 1000 °C in the presence of ammonia.  Since ammonia is produced 
in situ during irradiation of the [11C]methane target by the radiolysis of nitrogen in the 
presence of hydrogen, this further simplifies the procedure.  Cyanide can be 
quantified down to ppb levels by HPLC using an electrochemical detector (1) or by 
the use of colorimetric methods. 
 
 
Experimental 
 
Target 
The target consists of a water cooled, quartz lined aluminium body (length 250 mm, 
i.d. 19.8 mm) (2). The target volume is 75 mL.  
Irradiations 
Irradiations were performed using the Scanditronix MC-32 cyclotron at Copenhagen 
University Hospital, Rigshospitalet.  H- ions were accelerated to 17.2 MeV, giving an 
target entrance energy of ca. 16 MeV.  The target gas consisted of ultra pure gases 
of 10% hydrogen in nitrogen (AGA, Sweden, grade 6.0 [>99.99995%]) . The target fill 
pressure was 26 bar giving a gas volume of 2L at NTP. 
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Analysis 
Following irradiations, the gases were released from the target by simply opening a 
valve and transferred to a hotcell. A mass-flow controller was set at 100mL/min and 
the gasses were passed over 3.37g of platinum wire (20m L x 0.1mm Ø) in a 6mm ID 
quartz tube at 1000°C.  The produced [11C]cyanide was trapped in a 20mL vial 
containing 20mL of pure water. After the vial an Ascarite trap (for measuring cyanide 
trapping efficiency) and a gas collection bag (to prevent the escape of radioactive 
gasses) was attached. After decay the amount of cyanide was measured using the 
pyridine-barbituric acid colorimetric test (Koenig reaction, EPA method 335.4-1) (3,4). 
 
 
Results 
 
Not optimized conversion from   [11C]methane to [11C]cyanide were 50%. Trapping 
was quantitative (no radioactivity was found in the Ascarite trap) and 20GBq (n=4) of 
activity was trapped and the  concentration of cyanide in the solution was below the 
detection limit (2μg/L = 77nM/L).  This corresponds to a specific activity of >13 000 
GBq/mol (EOB). For radiosynthesis the residual ammonia is easily removed by a trap 
filled with Dowex  50W (200-400 mesh) followed by Sicapent (to dry / remove water), 
for multi-runs, or a smoke tube (Draeger air current tube; silica impregnated with 
fuming sulfuric acid) for a single run. 
 
 
Outlook 
 
Experiments to increase the conversion and minimize the trapping volume are 
planned. 
 
 
References 
 
1) )  Direct determination of free cyanide in drinking water by ion 
chromatography with pulsed amperometric detection T.T. Christison, J.S. Rohrer, J. 
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Recent advances and developments in IBA cyclotrons 

Jean-Michel Geets, Benoit Nactergal, Michel Abs, Claudy Fostier, Eric Kral  

IBA Molecular, IBA Technology group, www.iba-group.com 

Various development and enhancement to the existing IBA cyclotron range were accomplished last 
year including the launch of new cyclotrons and the revival of the oxygen machine. 

To reply to the strong demand of F-18 radiopharmaceuticals in PET nuclear medicine, IBA has 
achieved a development program on the Cyclone® 18/9 PET cyclotron with the aim of increasing 
beam current and reliability. The strippers were replaced by a ‘drop-in-place’ designed to ease the 
maintenance.  The uncritical internal ion source system was doubled so as to provide redundancy 
and lower maintenance schedule in the Cyclone® 18 TWIN with two proton sources. Since almost 
all of the PET tracers are today produced by protons, the same concepts were reused to develop 
the Cyclone 11 TWIN compact self-shielded machine for hospital-scale production of PET tracers.  

The well-know Oxygen generator, a positive deuteron machine known as Cyclone® 3d, is under 
redesign for installation in Japan in early 2011. The aim is to provide a continuous flow of 15O2 
without disrupting the PET production schedule of the main hospital cyclotron. The production is 
carried out on natural nitrogen as target with 3.6 MeV deuteron. 

In the high energy range, following the Cyclone® 70 XP multiparticules machine installation in 
Nantes (France), a small brother was designed in the 30 MeV proton-alpha range, the Cyclone® 
30 XP for Jülich (Germany). While proton (15-30 MeV) and deuteron (8-15 MeV) are produced and 
extracted in the well-known negative ion mode with stripping extraction in the Cyclone® 30, the 
positive alpha beam (nucleus of helium atom He+) is accelerated and extracted in positive ion 
mode using an electrostatic deflector.  The He2+ acceleration needs specific external source and 
adjustments to the cyclotron magnetic field and acceleration frequency (RF). The energy of the 
alpha beam will be fixed in the 29-30 MeV range to maximize At-211 production. Redesign of the 
magnet system was needed in order to leave free space for the alpha deflector and to reuse 
magnetic ‘flaps’ for field correction as it is done on the IBA-Cyclone® 18/9. Some technical 
challenges were solved to fit the two RF acceleration modes in the same machine with external ion 
sources platform for the different ions species. The innovative new RF design was patented by 
IBA.  

The well-know Cyclone® 30 used by most of the SPECT producers worldwide was upgraded to 
higher current mainly to deal with the Tl-201 needs.  A new external powerful H- ion source was 
used, a redesigned injection line and central region was installed onto a standard 30 MeV 
cyclotron. The acceleration power (RF) was upgraded to 100 kW using the IBA in-house expertise 
giving the power extra supply for acceleration of 2mA of proton beam. Auxiliaries systems were 
upgraded (extraction, collimators,..) to handle the new beam power. Consequently, the high power 
solid target system is proposed with an optimized full process (plating, separation and recovery of 
isotope). 
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Target body with electroplated Sn 

Schematic drawing of the 6° grazing incidence target design with irradiation chamber and Ø5 mm circular collima-
tor (right). For illustration purposes the Ø5 mm collimated proton beam is shown. 

Production of therapeutic quantities of 64Cu and 119Sb for radionuclide therapy 
using a small PET cyclotron 

 
H. Thisgaarda, M. Jensenb, D. R. Elemab 

 
 

a Odense PET Centre, Dept. of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, DK-
5000 Odense C, Denmark. 
 
b The Hevesy Laboratory, Radiation Research Department, Risoe National Laboratory for Sustainable 
Energy, Technical University of Denmark, P.O. 49, DK-4000 Roskilde, Denmark. 
 
 
Introduction 
 
In the recent years the use of radionuclides in targeted cancer therapy has increased. In this study we 
have developed a high-current solid target system and demonstrated that by the use of a typical low-
energy medical cyclotron, it is possible to produce tens of GBq’s of many unconventional radionu-
clides relevant for cancer therapy such as 64Cu and 119Sb locally at the hospitals. 
 
Materials and methods 
 
The irradiations were performed using a slightly modified GE PETtrace cyclotron equipped with a 
beam line. The PETtrace is originally specified to deliver > 75 µA 16.5 MeV protons or > 60 µA 8.4 
MeV deuterons on target but has been shown to be capable of accelerating > 200 µA protons by care-
ful adjustment of the central region and with much attention to 
vacuum conditions. 

The target consists of a 2 mm thick silver plate with 8 cooling 
fins (height 2 mm, width 1 mm) which is mounted on top of an 
aluminium base with a stainless steel mounting ring (see 
figures). The back side of the silver plate is cooled by water flow 
through the rectangular channels between the cooling fins (1 
mm × 2 mm) with a water flow rate of 14 l/min and a water inlet 
temperature of ~3° C. 

Two different target materials were used for the irradiations. 
Either enriched 64Ni for the direct production of 64Cu via the 
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The calculated temperature profile on the target face for a 203 µA 
beam corresponding to 180 µA on the target. 

64Ni(p,n)64Cu reaction or natSn to demonstrate the capability of producing high amounts of the Auger-
electron-emitter 119Sb via the 119Sn(p,n)119Sb reaction. The electroplating of the 64Ni targets were done 
using a 64Ni ammonium sulphate plating solution and the natSn targets were made according to our 
newly developed method (Thisgaard and Jensen, Appl. Rad. Isot. 67, 2009) with a hot natSn potassium 
hydroxide solution. 

The targets were irradiated several times with the 16 MeV proton beam collimated to Ø5 mm. Both 
target materials were initially irradiated with a net target current of 180 µA with a collimator spill be-
tween 10–15%, i.e. with approximately 200–210 µA beam current before the Ø5 mm collimator to test 
the thermal performance of the targets. After the irradiations the targets were stored for a few days to 
let the produced activity decay and then inspected with a microscope and weighted. For production 
yield measurements, the targets were irradiated several times with peak target currents of 150 µA, 
again with a collimator spill between 10–15%, with irradiation times up to 76 minutes. 

The temperature profile and the thermal induced stress (data not shown) in the silver plate were 
modelled using Comsol Multiphysics 3.3. The code uses a finite-element analysis (FEA) of the silver 

plate with 24096 mesh elements. 
 

Results 
 
The target was capable of withstanding the 180 µA Ø5 mm proton beam with both target materials 
tested. No sign of melting was seen on the target surfaces and no losses of target material were found 
from weighing the targets after EOB. This means that the surface temperature had not been above 
231.93° C during the Sn irradiations (the melting point of Sn) and probably not during the Ni irradia-
tions either due to the higher thermal conductivity of Ni – in good agreement with the modelled results 
(see figure below). 

From the 150 µA peak current irradiations the produced 64Cu activity was measured to be 8.2 ± 0.7 
GBq at EOB for the 76 min. irradiation (mean current of 121 µA), corresponding to 54 ± 5 MBq/µAh 
using 98% enriched 64Ni with a plated target thickness of 8.5 mg/cm2. This corresponds to the proton 
energy interval of 16.0 → 14.3 MeV, i.e. well above the maximum cross section of the excitation func-
tion for the 64Ni(p,n)64Cu reaction at approximately 11 MeV.  

By increasing the plated target thickness to e.g. 30 mg/cm2 of enriched 119Sn or 64Ni (resulting in a 
surface temperature increase of less than ~25° C) , it will be possible to produce ~46 GBq of 119Sb or 
~174 GBq of 64Cu, respectively, in 3 hours using 150 µA target current as above. In both examples, 
the total amount of enriched target material required to obtain the 30 mg/cm2 thickness will be less 
than 60 mg due to the extremely 
focused proton beam (Ø5 mm), 
thus keeping the specific activity 
high and the metal impurities low. 
 
Conclusion 
  
In the current study we have de-
veloped a high current solid target 
system and shown that by the use 
of a typical low-energy, medical 
cyclotron, it is possible to produce 
tens of GBq’s of unconventional 
therapeutic radionuclides locally at 
the hospitals. 
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The chemistry of high temperature gas phase production of 
methyliodide

L. van der Vliet, G. Westera*
Veenstra Instruments, Joure, The Netherlands, *University Hospital, Center for 
Radiopharmaceutical Science , Zurich, Switzerland,

A methyliodide system was set up to react iodine and methane at high temperature in the 
gasphase (Larsen). 

CH4 ↑ + I2 ↑ → CH3I ↑

The apparatus consists of an iodine vaporizer, a high temperature (about 700º C) reactor and a 
Porapak-N methyliodide trap. The lenght of the tube which is heated to the high temperature can 
be varied.
 A known quantity of methane is added from an injection loop or from a methaniser which is fed 
with carbon dioxide from the injection loop. The methane is transported by a controlled flow of 
helium through a carbosphere column, which is needed to remove hydrogen from the methane 
(which is present when starting with methane from a cyclotron and after methanisation). Behind the 
iodine oven a UV spectrometer is positioned to measure the absorbance in the glastube and the 
iodine absorbance is used as feedback to regulate the temperature of the vaporizer and thus 
control the iodine concentration (Link, Clark).

Scheme:

This way all relevant parameters are under control and known quantitatively. The initial amount of 
methane was choosen as 9 µl, which is the amount of carbon delivered from a cyclotron when 
producing carbon-11 of moderate specific activity. 
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The relation between the iodine concentration and the absorbance was calibrated, by collecting the 
iodine at a stable absorbance during a defined time and weighing the absorbed iodine.

The MeI is collected in methanol (> 90 % is known to be trapped in the first bottle) and analysed by 
HPLC over an ACE 5 C18 column (15 x 4.6 mm, particle size 5 µm) eluting with methanol / water 
60/40 (v.v.) and UV detection (240 nm). A standard solution containing Methyliodide (MeI) and 
diiodomethane (MeI2) was used for calibration.

Results

The results given here are preliminary and have to be more precisely calibrated

Transport flow (He)-flow) dependence:

The MeI yield decreases at high and low transport flow. Over a broad flow range, the variation in 
yield was not significant.

Va r i o u s  flow s  wi t h  a  I2  ab s  of  0. 10

Fl o w  [ml/mi n] 15 23 30 38 45

Pe a k  ar e a 0.38 0.6 1 0.39 0.50 0.38

Me I  [uMo l] 0.026 0.042 0.027 0.035 0.026

Yi e l d  [%] 7 10 7 8 7

Iodine concentration dependence:

The MeI yield increases with increasing iodine gas concentration, the maximum concentration still 
has to be determined:

Va r i o u s  flow s  wi t h  an d  I2  co n c e n t r a t i o n s  res u l t e d  in  the  fol l o w i n g  yi e l d s

0. 10  I2a b s 0. 15  I2  ab s 0.20  I2  ab s

23  ml/mi n 10 13 17

30  ml/mi n 7 1 1 16

38  ml/mi n 8 13 16

References

Larsen P., Ulin J. and Dahlstrom K. (1995) A new method for production of 11C-labelled 
methyliodide from 11C-methane. J. Lab. Comp. Radiopharm. 37, 76-78
Linl, J.M., Krohn K.A., Clark J.C. (1997) Production of [11C]CH3I by single pass reaction of [11C]CH4 

with I2. Nucl. Med. Biol. 24, 93-97
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Target Performance – [11C]CO2 and [11C]CH4 Production

Semi Helin1, Eveliina Arponen1, Johan Rajander2, Jussi Aromaa2, Olof Solin1,2

Turku PET Centre, University of Turku1 and Åbo Akademi University2, Turku, Finland

Introduction

 A systematic investigation on N2 (0.1 % O2) and N2 (5 % H2) target performances is presented in
terms of saturation yields as function of target body temperature and irradiation current.

Materials and methods

Identical aluminium target bodies were used for both [11C]CO2 and [11C]CH4 productions. The
conical chambers measured 11.2 x 90.0 x 19.4 mm (front I.D. x length x back I.D.) and 16.9 cm3.
The inlet foil was supported by a metallic grid having a transparency of ~ 70 %. In all irradiations
the chambers were loaded at 20 °C to 35 bar pressure and irradiated for 20 minutes. Variable
parameters were the target body temperature (10, 40, 70 °C), regulated with a cooling fluid circuit
and a heat exchanger, and the irradiation current (10, 20, 30, 40 µA). For the data points n = 2.
The proton beam was generated with a fixed energy (17 MeV) negative ion cyclotron (CC 18/9,
D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg, Russia).

The irradiation product was directed to a hot cell via a capillary and valve arrangement and a mass
flow controller. The main 11C-species was first separated from the target gas using a selective trap:
Porapak N column in Ar(Liq) for the [11C]CH4 and an Ascarite column at room temperature for the
[11C]CO2. The traps were placed in a dose calibrator and the irradiated gas that passed a trap was
collected as gas. The collected volume was readable from the gas trap and an aliquot could be
taken for radioactivity measurement.

The 11C main product yield was thus measured on-line with the dose calibrator containing the first
trap. The content of 11C and 13N in the second trap was determined by iterating the decay curve
fitting to the radioactivity values at early and late time points. Yields for the 11C main product and
11C and 13N by-products were calculated as saturation activities (Asat [GBq/microA]).

Figure 1. Pressure versus irradiation current at different target body temperatures
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Results

The pressure increase as function of beam current was similar for both targets (figure 1). A slight
difference was observed at higher currents.

The main component yield is practically constant for the [11C]CO2 (figure 2, pane A) across the
range of varied target body temperature and irradiation current. The [11C]CH4 yield (figure 2, pane
B) is directly proportional to the temperature and inversely proportional to the current.

[11C]CO generation in the N2 (0.1 % O2) target is low and inversely proportional to temperature and
constant across the investigated current range. [11C]by-product generation is negligible in the N2

(5 % H2) target.
13N generation is constant across the range of current and temperature using either N2 (0.1 % O2)
or N2 (5 % H2) target gases. However, 13N production is slightly lower for the N2 (5 % H2) target.

Figure 2. Yield of the main component as a function of irradiation current at 10 – 70 °C.

Conclusions

Production of [11C]CO2 is practically independent of the irradiation current and the target  body
temperature, whereas [11C]CH4 production was found to be strongly dependent on the current and
target body temperature.
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A Solid 114mIn Target Prototype with Online Thermal Diffusion Activity 

Extraction- Work in Progress 
Jonathan Siikanena,b and Anders Sandellb  
aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden   
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund,  Sweden 
 
Introduction 

A solid target system is under development for indium isotope production. Pure 114mIn (T1/2=45 d, 
Eγ=190 keV, 15.6%) can be produced from proton irradiation on natural cadmium foils if the 
simultaneously produced 110In-111In activity is allowed to decay several days. 114mIn decays to 114In 
(T1/2=71.9 s, β-=99.5%). This work focuses on 114mIn production/extraction. 
 
Material and methods  

A target holder was constructed to match a MC 17 Scanditronix cyclotron with a wide beam. The 
beam fits into a collimator of 40x10 mm2. The foil holder is a 30° slanted cooling/heating block with a 
three side frame mounted to the beam strike side (fig 4). On this frame a 25 µm niobium foil is 
placed to create a water tight cavity, of some ml volume, between the niobium foil and 
cooling/heating block. In this cavity the cadmium foils are placed. The slanting gives a beam strike 
area of 40x20 mm2. This area is cooled with a 1.5 mm thick, 3 l/min water film.  
The system was loaded with natural cadmium foils and bombarded with 45 µA protons, under 
helium flush. After irradiation, the foils were heated to 280-310°C for 1 to 2 hours under argon flush 
in the cavity. The heating was performed with two heating elements (L=40 mm, ø=6.5 mm, P=160 
W each) mounted symmetrically on the long sides to the beam strike area (fig 3). The temperature 
was measured, with two PT100 sensors (9.5x1.9x1.0 mm, -70…+500°C) mounted on the sides (fig 
4), and displayed/controlled with two Shimaden RS32 controllers. The side temperatures were 
calibrated to the actual temperature under the cadmium foil with another PT 100 sensor.  
The activity extraction was made with a thermal diffusion technique [1]. This technique is based on 
heating close to the melting point of cadmium (320°C). At this temperature, the produced indium 
isotopes (melting point 150°C) are diffusing in the cadmium matrix. Gradually over time, the indium 
atoms concentrate on the foil’s surface and can then be etched off with a weak acid (0.05 M HCl). 
The acid was pumped in and out with a peristaltic pump.  

 

 
 

 

 

Fig 1. Target cooling/heating block 
back plate with water cooling in out 
and two heating elements. 

Fig 2. 1: 25 µm Nb foil, 2: Cd-foil-Al-fork (fig 4)         
3: Outer frame with He/Ar in/out and a hole in the 
bottom for activity extraction, 4: back plate 0.5 mm 
back wall to cooling water, 5: water in/out plate. 

Fig 3. Cross section view of the back 
plate: 1: Beam strike area. 2: Heat 
element holes. 

2 1 3 4 5 

1 

A-extraction                     (mm)                      

2 

2 

0.5 

146

kmje
Typewritten Text
Abstract 026



  
Fig 4. The foil is squeezed and stabilized into place under the flush tubes. This 
view is covered with a 25 µm Nb foil. HCl is pumped in/out from below, in the 
cavity between the back plate and the Nb-foil. The Cd-foils are mounted on an Al-
fork with a silicone adhesive. 
 

Fig 5: The target is loaded from its rear top simply 
by sliding down a Cd-Al-fork. 

 

Ep on cadmium foils is ~12.3 MeV. 100 and 50 µm cadmium foils slanted 30° degrades 12.3  9.2 
and 12.3  10.9 MeV. This correspond to theoretical 114mIn activity yields of 0.2 MBq/µAh and 0.08 
MBq/µAh for natural1 cadmium foils [2]. 
 
Preliminary Results 

Low activity yields indicated that a great portion of the beam had missed the actual target, i.e. the 
cadmium foil. Activity yields will be presented at the conference when new irradiation has been 
performed. Separation yields on the other hand are valid and are given in table 1. 
 
Table 1: Extraction yields were either measured with a Capintec CRC 120 dose calibrator or a HPGe detector. Etching time was 1-2 min. 
 

Foil 
# 

Thickness 
(µm) 

Irradiation 
Time (min) 

Heating time 
(min) 

extraction  
(%) 

1=T116 100 ~6.3 128 41 
2=T117 100 ~6.8 120 54 
3=T118 100 ~6.8 60 44 
4=T119 50 ~6.7 120 41 
5=T122 100 ~7.0 60 40 
6=T123 100 ~6.8 120 49 
7=T124 50 ~6.7 120 56 

 

Discussion 

It was found that thermal diffusion extraction of indium from cadmium foils, which only requires 
temperatures around 300°C, is practically doable direct in the target without any dismounting of foils 
after irradiation. About 40-50% of produced activity could be extracted with heating times of 1-2 
hours. Natural cadmium material for one target cost about 10 Euros. 
 
Acknowledgements: 
Thanks to Jan Hultqvist, University Hospital Lund, for machining the target pieces. 
Thanks to Professor Hans Lundqvist, Professor Vladimir Tolmachev and Dr Lars Einarsson Uppsala 
University for the separation technique and discussions. 
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[1] Lundqvist. H. et al “Rapid Separation of 110

In from Enriched Cd Targets by Thermal Diffusion”  Appl Radiat. Isot. Vol. 46, No. 9, pp. 
859-863, 1995 
[2] IAEA Recommended cross sections for 114Cd(p,n)114mIn reaction (http://www-nds.iaea.org/radionuclides/cd4p4in0.html) 
                                                           
1
 The yields are calculated to correspond to the abundance of 

114
Cd in natural Cd foil i.e. 28.73 % 
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4.
Foil is etched w

ith 5‐6 m
l  0.05 M

 HClfor about 2 
m
in

In/outofacid
iscontrolled

w
ith

peristaltic
m
in. In/out of acid is controlled w

ith peristaltic 
pum

ps.
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Results

•
First set of experim

ents gave 40‐50 %
 extraction yield 

(
7)b

t
A

i
ld

d
t

b
d

li
t

f
(n=7) but very poor A‐yields due to bad alignm

ent of 
holder etc

•
Heating 280‐310°C (som

e problem
s w

ith PT100)

9

Results
•
100 µm

 Cd
foil slanted 30°

, E
p 12.3 

8.4 M
eV

1

•
theoretical

114mIn
yieldsof0

25
M
Bq/µAh

nat‐Cd
theoretical 

In yields of 0.25 M
Bq/µAh nat

Cd
•
In this set all foils w

ere heated for 2 h at 300 °C

Table 2:   114mIn activities  and separation yields w
ere quantified w

ith HPGe
detector. 

D
d
ti

4%
Dead tim

es < 4%

Foil
I

(
)

Irrad
Tim

e
Beam
dose

Exp
A
(EO

B)
Exp

A
(EO

B)
Theo
Activity

Yield
ofTheo

Separation 
Yield

# 
(µA) 

Tim
e 

(m
in) 

dose
(µAh)  A (EO

B)
(KBq) 

A (EO
B)

(KBq/µAh) 
Activity
(KBq) 

of Theo
(%

)
Yield
(%

)
1 

45
10

7
155

22
1750

9
43

2
45

7.5
5.1

95
19

1275
7

47
3 

45
5.2

3.5
147

42
875

17
48

4
30

6.5
3

130
43

750
17

49
5 

30
6.5

3
141

47
750

19
54

6
40

5
3

155
52

750
21

TBD
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Discussion

•
It w

as found that therm
al diffusion extraction of 

indium
 from

 cadm
ium

 foils, w
hich only requires 

tem
peratures around 300°C, is practically doable 

direct in the target w
ithout any dism

ounting of foils 
afterirradiation
after irradiation

•
About 40‐50%

 of produced activity could be 
t

t
d

ith
h

ti
ti

f1
2
h

extracted w
ith heating tim

es of 1‐2 hours
•
< 2 %

 of cadm
ium

 m
aterial losses 

•
N
atural cadm

ium
 m

aterial for one target cost about 
10

Euros
10 Euros

•
Low

 activity yields (about 20 %
 of theoretical) needs 

further investigation
11
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In the future

•
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B
+
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%
–
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•
111In (T

1/2 =2.8 d)

–
γ=171

keV
(90

6
%
)and

γ=245
keV

(94
1
%
)

–
γ=171 keV

(90,6 %
)and γ=245 keV

(94,1 %
) 
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Upgrade of a Control System for a Scanditronix MC 17 Cyclotron 

Jonathan Siikanena,b Kaj Ljunggrenb and Anders Sandellb  
aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden   
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund,  Sweden 
 
In order to extend the life time of the relatively old Scanditronix MC17 cyclotron (built 1980) an 
upgrade to the control system was commissioned. The existing system is a PM 550 Texas 
Instruments. It consist of a Central Control Unit (CCU, 4 KB), a programmer, 6 MT 
input(170)/output(120) modules (fig 1), 7MT analog input(16)/output(12), a 7MT parallel 
input(4)/output(4) module and a control consol interface (fig 3). The programming is ordinary ladder 
logic. The system works well but the lack of spare CCU:s forced an upgrade to the system. 
 
The choice was the CTI 2500 system due the existing special interface card 505-5190 B. This card 
makes it possible to keep, and avoid rewiring of, all the 6 MT modules.  CTI-2558/2562 N analog 
input/output modules replaced the old ones. The ADC:s were connected in parallel to the old ones. 
The old DAC:s and the new DAC:s were connected to a toggle switch. This simple rewiring was 
done in less than five hour. The 7MT parallel input/output were only used for display function and 
could be omitted in the new system. The installation makes it possible to change between the 
systems within less than 5 minutes. The CTI system runs under CTI P-SM505-CW N software (505 
Workshop Single License). A new interface was written in Visual Basic instead of using a 
commercial SCADA program. The interface was used on a PC lap top. The upgrade was performed 
in collaboration with a Danish company Green Matic. Green Matic made the ladder programming. 
The total cost of the upgrade was less than 20 000 Euros. Testing and debugging of the new 
system took one day. 

 
Fig 1: The 6MT modules 

 

  
Fig 2: The new CTI system (In order from left: Power Supply, CPU, 

Interface card, 4 Analog 8 Channels IN/OUT cards) 

 
Fig 3: The PM550 control consol 

 

 

 
Fig 4: New interface written in visual basic 
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New software for the TracerLab Mx 

D. Fontaine2, D. Le Bars3, D. Martinot1, V. Tadino4, F. Tedesco1, G. Villeret4 

1. 49h, 23 Rue du Vieux Mayeur, 4000 Liège, Belgium 
2. Eosis, 33 Rue Lefebvre, 7000 Mons, Belgium 
3. Cermep, 59 Bvd Pinel, 69003 Lyon, France 
4. ORA, 337 Rue de Tilleur, 4420 St Nicolas, Belgium 

 

Introduction: With almost 800 systems installed all over the world, the Coïncidence/TracerLab Mx 
(General Electric, USA) is still the best seller among synthesizers for [18F]FDG production. This 
device is approved by relevant Authorities for most of the Marketing Authorizations and used in a 
GMP environment to produce pharmaceutical grade fluorodeoxyglucose. When FDG started to be 
commercialized, private laboratories were approved by the Authorities as “mono-product” 
producers allowed to prepare, sell and deliver only FDG. Further, following the increasing market 
demand for other radiopharmaceuticals, they were solicited to produce already published tracers 
under special license and under specific orders for approved clinical protocols. Today, more and 
more producers are very far in the development of new tracers and on their way to submit 
Marketing Authorizations. 

Objective: On one hand, most of the production laboratories must adapt their license and 
organization to become “multi-product” and one major step of the file update is the demonstration 
that in one room, several different synthesis are managed at no risk for the final product (schedule, 
cross contamination, ….). On the other hand, most of technician teams are trained on the 
TracerLab Mx and the switch to any other system may easily take up to several months to recover 
the same reliability. Today, by using the TracerLab Mx in its original configuration, the above 
mentioned two points are not under control, mostly due to the inadequacy of the original software. 

Features:  

The purposes of a new software development were: 

1) Availability of specific folders for each different produced radiopharmaceuticals 
2) Use of  kits commercially available from ABX (Dresden, Germany) for NaF, FLT, F-

Miso, FET, F-acetate and F-choline 
3) Avoidance of sequence problems, with reset of the PLC memory between each run 
4) Specific kit test dedicated to the molecule 
5) Display a specific flow path layout for each molecule 
6) Creation of a specific report corresponding to the name of the molecule 
7) Building of data base in order to manage and optimize the preventive maintenance 
8) Implementation of different level of users that can log into the system (administrator, 

operator,...) 
9) Safe and secure control of the TracerLab Mx from any computer through secured LAN 

(cabled and/or wifi) or secured internet connection 
10) Open updatable list of compounds 

Other useful features added to the software: 

11) Addition of a 5th radioactivity detector 
12) Possibility to connect a UV detector 
13) Control of the 8 outputs still available on the back of the Mx 
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14) For the user willing to run synthesis including HPLC purification, dedicated screen 
displaying HPLC UV and radio detection, “Collect” and “Stop collect” button and the 
possibility to control an “Add On Reform” 

Upgrade Procedure:  

The upgrade of an existing TracerLab Mx is quite simple: 
• Replacement of the RS232 cable by an RJ45 cable 
• Replacement of the PLC control board 
• Installation of a control server and a WIFI router 

From that configuration, any computer loaded with standard browser (Firefox for example), can 
control the TracerLab Mx. 

User Procedure: 

Step 1: 

 

Step 2 

 

Step 3 : 

 

Results: 

 Duration Uncorrected Yield 

Kit Only 
NaF <10 min Quantitative 
FLT 54 min 21% 
F-Miso 54 min 22% 
F-choline 32min 17% 
FET 54 17% 
F acetate 42 39% 
FDG 26 61% 

HPLC 
MPPF 68 min 21% 
FLT 40 min 39% 
Fallypride Under Progress  
Licensed 1 Under Progress  

Conclusion:  

By using the new software the Tracer Mx has now become a flexible platform dedicated not only to 
FDG production, but also to most of the fluorinated tracers with clinical demand. 
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PRODUCTION OF NO CARRIER ADDED 
64

Cu & 
55

Co FROM A NATURAL 

NICKEL SOLID TARGET USING AN 18MeV CYCLOTRON PROTON BEAM 

A. H. Asad
1,2

, C. Jeffery
1
, S.V. Smith

 3
, S. Chan

1
, D. Cryer

1
 & R. I. Price

1,4 

1
Radiopharmaceutical Production & Development (RAPID) Laboratory, Medical 

Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia 
2
Imaging and Applied Physics, Curtin University of Technology, Perth, Australia 

3
Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia 

4
School of Physics, University of Western Australia, Perth, Australia 

INTRODUCTION: There is growing interest in the Australian research community for 

new PET radioisotopes with relatively long half lives.  
64

Cu is a candidate, since; (i) it 

can be produced in cyclotrons found in a medical setting; (ii) the translational energy of 

its emitted positron is moderate (0.65MeV), and; (iii) its half life is sufficiently long 

(12.7h) to be used to radiolabel a range of molecular targeting agents (including 

monoclonal antibodies) and for the isotope to be transported across continents.  

The RAPID Lab produces [
18

F]FDG on a daily basis (~4500 doses per year), plus other 

clinical radiopharmaceuticals based on biogenic PET isotopes. The radioisotopes for 

these products are produced using standard targetry of an 18/9 MeV IBA cyclotron.  As 

the productions of 
64

Cu and 
89

Zr both require an external beam, the RAPID team has 

devised a purpose built solid targetry system to suit this setting.  The new targetry 

system consists of a 30cm long external beam line fitted with a 50μm Havar vacuum 

window plus an independent vacuum and cooling system (chilled water plus helium) for 

the target and beam degrader.  Proton energies and currents can be controlled between 

4–17.3MeV (using beam degraders) and 10-30μA, respectively.   

The preferred approach for the production of 
64

Cu using a medium-energy cyclotron 

uses enriched 
64

Ni as the target in the reaction 
64

Ni(p,n)
64

Cu.  A yield of 248MBq/μA.h 

has been reported [2]. However, for a natural nickel (
nat

Ni) target the yield is 

considerably less, since the abundance of 
64

Ni in 
nat

Ni is only 0.91%.  This study  

investigated the production and purification of the radionuclides 
64

Cu, 
55

Co and 
57

Co, 

(the latter two arising from 
58,60

Ni[p,]
55,57

Co) using a 
nat

Ni thin-foil target, as a 

preliminary ‘proof-of-principle’ study prior to the bombardment of more expensive 

isotopically enriched  targets formed by electroplating 
64

Ni onto a gold substrate. 

METHODS: A high purity 
nat

Ni foil (99.99%) of nominal thickness 50μm and 15mm 

diameter was weighed on a 5-decimal-place balance to determine true average thickness 

prior to proton bombardment.  Three separate runs were performed.  The target foil was 

cooled by both chilled water and helium. The accessible proton beam energy of 17.3 

MeV was moderated to 11.7MeV at the target surface by using a 1020μm graphite 

degrader placed in the collimator of the solid targetry beam line.  

Bombardment elapsed times were 8, 19, and 20 minutes with beam currents of 10.4, 

19.1 and 14 μA, respectively.  Beam currents were uncorrected for secondary electron 

emission.  At end of bombardment (EOB) the irradiated nickel target was left to decay 

for 3-4 hours to remove the short half-life radioisotopes 
60

Cu & 
61

Cu.  

The target was then dissolved in concentrated acids at 100
o
C and then loaded on to 

either a cation or an anion exchange column (1x 20cm).  Nickel from the target plus Cu 

and Co radioisotopes were separately eluted using a range of solvents mixed with 
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hydrochloric acid.  The fractions containing the radioisotopes of Cu and Co were 

characterized for radionuclidic purity and activity by calibrated gamma spectrometry 

(cryo-HPGe gamma spectrometer; Genie2000 software).  

RESULTS:  The table summarises the activities for 
64

Cu, 
57

Co and 
55

Co for each 
nat

Ni 

target for 3 consecutive runs.  It compares the activity for each radioisotope (corrected 

to EOB) with values calculated using reaction cross sections reported in the literature [1, 

2 and 3].     

Table: Activities for 
64

Cu, 
55

Co and 
57

Co, as a percentage of their respective predicted 

values calculated using published reaction cross sections plus targetry and beam 

parameters.   

Nickel Foil 
Thickness 

Proton 
Energy; 
Current 

Irradiation 
Time 

 

64Cu 

 

55Co 

 

57Co 

(m) (MeV; A) (min) (% of Predicted 
Activity)  

[using ref. 2] 

(% of Predicted 
Activity)  

[using ref. 1] 

(% of Predicted 
Activity) 

[using ref. 3] 

46 11.7 ; 10.4 8 80.2 94.8 86.4 

47 11.7 ; 14.0 20 84.4 84.8 88.7 

47 11.7 ; 19.1 19 64.7 78.6 97.2 

 

CONCLUSION:  We have performed preliminary ‘proof-of-principle’ experiments 

(prior to the use of an enriched target) on the production of Cu and Co isotopes using a 
nat

Ni target and a medium-energy cyclotron in a medical setting.  The activities 

produced are in reasonable agreement with predicted activities. For the three runs, 

activities of 
64

Cu ranged from 64.7 to 84.4% of the predicted values calculated from [2].  

Activities of 
55

Co and 
57

Co varied from 78.6% to 94.8% and 86.4% to 97.2%, 

respectively, of those values calculated from [1,3].   Work is proceeding to understand 

the variability in results between runs, particularly in the ratio of 
55

Co to
 57

Co, since 

these isotopes are eluted under identical chemical conditions. 

REFERENCES 

1.  F.S. Al Saleh et al., Applied Radiation and Isotopes 65 (2007) 104–113 

2.  Szelecsenyi F et al, Applied Radiation and Isotopes. 44 (1993) 575-580 

3.  S.Kaufman, et al., Physical Review. 117, 1532 (1960) 
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Introduction 

•
Rapid

advances
in

radioim
m

uno-diagnosis
&

-therapy
Rapid advances in radioim

m
uno

diagnosis &
 

therapy 
techniques have focused interest on  different production 
strategies for the longer lived PET isotopes such as 64Cu  

g
g

p
89Zr &

 124I.

•
The three decay paths of 64Cu [t1/2 =

12.7hr], nam
ely EC, 

β
+

and β
-

m
akes it an attractive radionuclide for PET 

im
aging as w

ell as targeted radiotherapy.

•
O

ver the past tw
o decades, cyclotron-based production of 

64Cu has been optim
ized, and 64Cu  is now

 being produced 
t

l
di

l
d

h
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Reportback from iThemba LABS: Some tales of broken targets, split 

beams and particle tracking 

C. Vermeulen, G.F. Steyn, N. Stodart, J.L Conradie, A Buffler, I Govender 

iThemba Laboratory for Accelerator Based Sciences, Cape Town, South Africa 

Introduction 

iThemba LABS started 2006 with one bombardment station handling batch targets with 66MeV 
protons up to a maximum 100uA. In 2010 we have four bombardment stations and the ability to 
split beam to two stations increasing the total intensity on target to 350uA. We have reported in 
previous meetings on the vertical bombardment station for large batch targets at high currents as 
well as the degrading system to produce F-18 on a commercial water target. This report will look at 
some successes and failures of these systems and highlight the new developments at the lab. 

Broken targets etc. 

   

Fig 1: When 66 MeV Strikes  Fig 2: Broken Ga Target 

The vertical bombardment station (VBTS) at iThemba LABS has now been in operation for 4 years 
and has seen just over 1 million micro-amp hours of beam. We have experienced a number of 
target (Fig 2) and infrastructure (Fig 1) failures, especially of gallium metal targets. We have 
implemented a number of measures (Fig 3) to reduce the frequency of breakage of these. 

 

Fig: 3: New Diagnostics 
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Beam Splitter 

We have implemented an electrostatic channel and a septum magnet (Fig 5), to obtain separated 
but simultaneous beams for the vertical and horizontal bombardment stations. This is based on the 
system for splitting employed at the Paul Scherrer Institut. (Conradie et al. 2007) 

 

Fig 5: Split Beamline 

PEPT 

Positron emission particle tracking (PEPT) was developed at the University of Birmingham 
(Hawkesworth et al., 1991; Parker et al., 1994). Since the arrival of the ECAT ‘EXACT3D’ (Model: 

CTI/Siemens 966) PET camera (Fig. 6), from Hammersmith Hospital Cape Town now boasts the 
second dedicated PEPT lab in the world. 

Initial runs (Fig 7) with tumbling mills, flotation cells and even an angle grinder have proven very 
successfull and development of tracer manufacture using both ion-exchange labelled particles and 
directly activated particles is continuing well. 

   

Fig 6: EXACT3D in its new home Fig 7: First PEPT run 
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Technical pitfalls in the production of 64Cu with high specific activity

J. Rajander1, J. Schlesinger1, M. Avila-Rodriguez1,2 and O. Solin1

1Turku PET Centre, Turku University and Åbo Akademi University, Finland

2Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México,
Mexico-City, Mexico

Introduction

In 2008, we initiated production of 64Cu aiming at high specific activities and high quantities.
Routine production of 64Cu as well as the reproducible and economical preparation of the 64Ni
target material with ultra-low metal contamination was established. Some technical pitfalls had then
to be overcome. We faced a) aggressive corrosion by concentrated acid solutions, b) flaking of the
target material during the irradiation, c) contamination of the target material with cooling water, d)
formation of insoluble [64Ni]NiO during the irradiation and e) incomplete dissolution of the irradiated
target material.

Methods

Using the 64Ni(p,n)64Cu reaction with an optimized beam profile and proton energy (13.0±0.2 MeV),
we routinely produce high quantities of 64Cu (10-38 GBq) on our CC 18/9 cyclotron (Efremov
Scientific Research Institute of Electrophysical Apparatus, St. Petersburg, Russia) as previously
described (Avila-Rodriguez et al., 2008). A semiautomatic processing of the irradiated 64Ni target
material and a remote controlled separation of 64Ni and 64Cu has been developed, which yields
64Cu with a high specific activity of 3 TBq/µmol. Using four miniature Geiger-Müller tubes, which
are placed within the processing module, we monitor the distribution of activity and control the
separation process of 64Cu (Rajander et al., 2009). The recovery of the 64Ni target material and the
preparation of the 64Ni electrolyte solution are done in a dedicated rotary evaporator. The computer
controlled electrochemical deposition of the 64Ni target material starts with a stepwise increase of
the deposition voltage from 2.0 V to 2.5 V within 5 h, followed by a constant voltage of 2.5 V for
40 h.

Results

a) The use of concentrated acid solutions for preparing the 64Ni electrolyte solution as well as for
separating 64Ni/64Cu caused serious corrosion problems in the fume hood and in the hot cell. This
problem was partly solved by using a closed and remote-controlled module for the processing of
the irradiated 64Ni target material, which includes dissolution, separation of 64Ni/64Cu and
concentration of the acidic 64Cu fraction. For recovery of the 64Ni target material from the
concentrated hydrochloric acid solution, a dedicated rotary evaporator is used inside a fume hood.
Acidic vapour from the evaporation process is neutralized by passing the vapours through an
alkaline aqueous solution in a flask.

b) Flaking of the 64Ni material from the Au-backing was twice observed during the irradiation. Thus,
we included an additional cleaning step for the gold disk in the target preparation procedure. After
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cleaning with Deconex®, the gold disk is briefly soaked in 6 M HNO3 and then rinsed subsequently
with DI water to efficiently remove traces of metallic and organic contamination from the gold
surface. After this step was included in target processing, no flaking of 64Ni target material from the
gold surface during the irradiation has occurred. Also the electroplating process is controlled with a
computer program in order to obtain more reproducible results in the target preparation.

c) Due to scratches on the back of the gold disk and thus, insufficient sealing of the O-ring against
the cooling water, contamination of the target material with cooling water was twice observed after
the irradiation. Due to this, lower specific activities were obtained for 64Cu. In order to solve this
problem, the gold disks were henceforth visually inspected and serious scratches were removed by
sanding.

d) A first series of targets was irradiated under ambient atmosphere. We then observed twice the
formation of insoluble, greenish [64Ni]NiO particles on the target material surface, resulting from an
oxidation of 64Ni during the irradiation. In order to avoid oxidation of nickel in the presence of
atmospheric oxygen, we henceforth applied a stream of helium on the target material during
irradiation. Subsequently, we have not observed formation of [64Ni]NiO.

e) In some cases, a thermal treatment of the irradiated target material with 10 M HCl at 100 °C for
20 min was insufficient to dissolve the target material. This might be a result of a passivation of the
64Ni surface during the irradiation. This problem was solved by applying a stream of helium on the
target material during irradiation, and also by extending the period of thermal treatment with
concentrated HCl from 20 to 40 min.
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Supported Foil Solution for Legacy Helium-Cooled Targets 
When An Alternative to Havar Foil Material is Desired 

 
Benjamin R Bender and G. Leonard Watkins 
 
PET Imaging Center, University of Iowa Health Care, Iowa City, IA 52242, USA 
 
For any given radionuclide target system, the choice of targetry is often made as a compromise 
between Quantity and Quality.   Quantity refers primarily to higher target yield or in the case of smaller 
volumes, higher specific activity.  Quality, for the purpose of this discussion, refers to radionuclidic and 
chemical purity.  Most recent target system design innovations have been driven by the need for 
increased target yield per run.  In no application is this more evident than in the evolving design of 18F 

targetry [Eriksson, et al; Zyuzin, et al].  This pursuit of “quantity” has resulted in numerous target design 
innovations.  Most notable are improvements in target geometry, optimization of target cooling 
thermodynamics and designs modifications intended to reduce proton beam loss due to interceding 
structures and foils.  But for those facilities whose overall production does not require target yields 
beyond a few Curies, the helium-cooled, two-foil target systems (fig 1) have remained in service, even if 
only for backup or research 18F production.  These legacy targets are characterized as having two foils 
along the beam path terminating in the target volume (gas or liquid). The front foil separates the tank 
vacuum from a helium cooling flange.  The back foil separates the helium cooling flange from the target 
volume chamber. 

 
Figure 1.  Representative image of a two-foil helium-cooled 18F target design. 

 
Our facility produces 18F and other radionuclides solely for our own clinical and research needs; thus 
our production needs are modest.   But to satisfy our low-level research production needs while also 
improving the yield of our low-efficiency radiopharmaceutical syntheses (eg. [18F]FLT) we have directed 
our targetry efforts towards reduction of radionuclidic and chemical impurities.  Regardless of target 
type, improvement in product purity may have significant implications to the efficiency of 
radiopharmaceutical syntheses as well as patient/participant dosimetry.  To achieve this we have 
retrofitted our two-foil 18F target to utilize Niobium for both the back foil (0.003” thick) and the body 
material of the target volume chamber [Nye, et al].  The significantly lower strength of Niobium when 
compared to Havar for the back foil presented an additional hurdle to the retrofit.  Additionally, local 
heating of the Niobium foil by the proton beam further threatens its ability to perform without failure.  To 
address these issues we opted to include another modern target feature, the grid support. 
This became the evolution of our novel retrofit grid support solution (fig 2).  Support grids in modern 
targetry are generally made from copper or aluminum and cooled by the same water that cools the 
target volume chamber.  This observation brings to light the final hurdle in our design – grid cooling.  
The solution is the existing Helium cooling system, but since a grid support, placed to support the 
Niobium foil, would block the flow of the Helium cooling, the grid must be modified.  Therefore, we have 
included a vent hole through the grid perpendicular to the beam path to allow helium flow which now 
becomes the grid cooling mechanism of this retrofit design. 
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Figure 2.  Foil Support Grid representation and placement.  

 
The primary benefit of this design is its low cost.  Commercially available targets may cost as much as 
$50,000, but the direct cost for this design was less than $3,000 for materials and machining.  To 
achieve this inexpensive solution, the aluminum grid foil support we designed requires only that the 
beam aperture in the helium flange be widened slightly to hold the grid support captive.  Additionally, 
this grid support can be fabricated using standard machining practices and a simpler rectangular grid 
design.  This significantly reduced the expense when compared to the commercial copper or aluminum 
hex-grid supports which utilize a more expensive EDM machining technology. 
A second benefit of this design is its ease of incorporation into the existing target.  It may be either 
slipped or press fit into the widened Helium flange beam aperture. 
Yet a third benefit is the utilization of the existing Helium cooling.  Where previously the Helium flow 
was directed to cool both the front and back foils, that flow will now pass through the vented support 
grid to conduct its heat away.  Because the grid is in direct contact with the back foil, it also acts as a 
heat sink to conduct heat away from the localized point where proton beam heating may weaken it.  
Also, because we utilize the existing helium cooling, it need not be defeated as a target interlock, as it 
is on many older cyclotrons.  And lastly, there is no need to make additional modifications to the target 
to cool the grid using the water cooling system as is common in the commercially available systems. 
As a final site specific benefit, our older, self-designed target allows easy replacement of the target 
insert (ie. the target load chamber).  This has allowed us to very easily convert this target at any time 
for the in-target production of [13N]Ammonia [Krasikova, et al] by simply replacing the Niobium insert 
and foils with Aluminum versions of each and overpressuring with CH4. Without the support grid, it 
would likely be impractical to use such thin (0.005” thick) aluminum foils, as they would be far too weak. 
In conclusion, this grid foil support design is an economical solution allowing the use of more chemically 
advantageous, though weaker, foils materials while easily maintaining integrity, even with overpressure 
in excess of 300 psi.  Additionally, no negative impact on the overall yield of the target was observed. 
 
Acknowledgement:  University of Iowa Medical Instruments shop and Tim Weaver for design support. 
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A Simple Target Modification to Allow for 3-D Beam Tuning 

J.S. Wilson, K. Gagnon and S.A. McQuarrie  

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA 

Introduction: The TR19/9 cyclotron at the Edmonton PET Centre (EPC) is a variable energy 
machine with a proton beam energy range from 13 to 19 MeV and a deuteron beam energy range 
from 6.5 to 9 MeV.  The energy and trajectory of the extracted beam is determined by the orbital at 
which the beam is intercepted by the extractor foil and it is essential, especially with the longer gas 
targets, that the beam is being directed down the centre of the target.  To ensure optimal beam 
alignment, more feedback on the angle of beam entry to the target was desired than could be 
offered by the 2 dimensional target port collimators.  

Aim:  To provide a means of monitoring the beam position during normal operation. This would 
allow for interactive real-time target alignment to assure that the beam is centred on target. 

Methods: The nosepiece of the target was 
lengthened to provide a 1 cm cylindrical beam 
port extending 5 cm prior to the target body.  
(Extended nosepiece with current pickup and 
original nosepiece, pictured opposite) The 
nosepiece was fabricated from anodized 
aluminum so that with insulated attachment, 
electrical isolation from the target body was 
possible.  Use of insulated bolts and plastic 
washers during target assembly enabled 
separate current pick-ups to be attached to 
the target body and the nosepiece.   
A solid target plate was prepared which had a hole drilled in the top to allow a temperature probe to 
be inserted to the middle of the plate.  This enabled the temperature of the target plate to be 
monitored between the beam spot and the water cooling on the back of the plate.  

Results: Beam alignment was easily achieved on gas targets equipped with the extended 
nosepiece and the irradiation pressure was readily optimized on true aligned conditions.  The effect 
of varying different ion source, radiofrequency and magnet parameters was also readily observed 
and all while the beam was at maximum normal operating specifications.   

Solid target irradiation (no nosepiece present):  We found a very linear relationship between the 
beam current and the target plate temperature.  It became increasingly difficult, however, to 
maintain this linear relationship at higher beam currents indicating that the registered beam was not 
hitting the plate.  As beam spread is more pronounced at higher currents, it is probable that the 1 
cm target aperture was no longer accommodating the entire beam.  Use of an isolated nosepiece 
would maintain alignment and show at what point maximum beam on target had been reached.  

Recently the nosepiece has been put onto the high current water targets and we will be evaluating 
the saturated yields vs observed nosepiece currents to determine the extent of beam expansion. 

Conclusions:  The isolated nosepiece allows for facile beam tuning and gives useful real time 
information on beam size and alignment. 
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Evolution of a High Yield Gas Phase 11CH3I Rig at LBNL 
James P. O’Neil, James Powell, Mustafa Janabi 
Biomedical Isotope Facility, Lawrence Berkeley National Laboratory, Berkeley CA USA  
 

After working with a home built “wet method” [11C]methyl iodide system for a 
number of years, an effort was made towards the in-house development of a gas 
phase rig.  This began with personal communication and visits to both TRIUMF and the 
University of Washington, Seattle PET centers for many helpful discussions, photos, 
drawings and hints that only years of experience can provide.  The culmination of this 
was the construction of a first iteration single pass, gas phase [11C]methyl iodide 
system that closely resembled the Seattle system described by Link[1].  

The Biomedical Isotope Facility (BIF) at the Lawrence Berkeley National 
Laboratory houses the prototype CTI RDS111 (Eproton = 11MeV) negative ion cyclotron.  
We run an original 7mL aluminum-body target filled to 300psi with 1% O2/N2 to produce 
[11C]CO2.  Typical production irradiations are 40 minutes in duration at 35uA beam 
current and provide on average 1.5Ci of [11C]CO2 that is most often converted to 
[11C]CH3I.  Operation of the [11C]CH3I system is as follows:  (a) Post irradiation, target 
gas is rapidly unloaded through a Carbosphere trap (60-80 mesh, 1.4g) at room 
temperature.  Discussions with Bruce Mock led us to choose this trapping medium over 
molecular sieves for the chromatographic properties providing trapping of the [11C]CO2 
and separation from target gas and side products. (b) After static heating of the trap to 
>80°C, the trap is swept with helium (50mL/min) and combined with hydrogen 
(50mL/min).  (c) The mixture is passed through a heated (400°C) nickel catalyst 
(Harshaw) and the resulting [11C]CH4 is trapped on a PoroPak-Q trap (100mg in 
aluminum u-tube, 2mm id x 90mm tall) at -196°C.  (d) The [11C]CH4 is released by 
raising the trap from the liq-N2 dewar and flushing with helium (80mL/min) directing the 
gas stream through a quartz reaction tube (10mm id x 350mm).  The head of the tube 
is packed with solid iodine that is heated to provide I2 vapor which mixes with incoming 
[11C]CH4 and is pushed further downstream into a high temperature segment (100mm 
long) where conversion takes place.  (e) The resulting [11C]CH3I exits the quartz 
reactor, is passed through a dry ascarite column (7mm id x 150mm), and is trapped on 
a glass test tube (4mm id x 50mm) immersed in liq-N2.    
Single-Pass Optimization 
Significant optimization of the 
single pass system was initially 
required to generate useable 
yields and purity of [11C]CH3I.  
There are primarily three 
parameters that govern the 
overall conversion of [11C]CH4 
to [11C]CH3I in the system, 
namely: (1)_Iodine oven 
temperature (I2 concentration); 
(2)_flow through the reactor 
tube (residence time); and 
(3)_temperature of the reactor 
(energy potential).  These three 
factors are highly 
interdependent, thus changing 
any one parameter requires a 
re-optimization of the other 
two.  For example, higher quartz tube (reactor) temperatures may require a faster flow 
rate and lower iodine oven temperature to decrease the co-production of [11C]CH2I2 
and maintain [11C]CH3I yield.  Through this process we experimentally determined a 
push gas flow of 80mL/min and I2 oven temperature of 70°C and then re-explored a 
range of reactor temperatures.  Over a range of 625-775°C, the undesired production 

 
 Figure 1: Optimization of reaction temperature for single pass 
                 conversion with flow at 80 mL/min and I2 oven at 70°C. 
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of [11C]CH2I2 increased linearly from 1.5-15%.  Over the same temperature range (625-
775°C), [11C]CH3I yield started at 15.5%, peaked at 32% (680°C) and fell back to 21%.  
Total conversion of methane to iodinated species followed a similar curve as shown in 
Figure 1.  Consistent yields of 25-30% were realized for production runs for a number 
of months.  
Recirculation System  In order to increase the conversion yield we installed a 
recirculation pump in the system, passing the unconverted [11C]CH4 back to the reactor 
as described by Larsen[2].  In addition, we have separated the conversion oven from 
the [11C]CH4 and [11C]CH3I trapping station allowing vertical placement on the hotcell 
side wall thus saving space. At the exit of the oven, a vortex chiller (-8°C) rapidly 
condenses I2 vapor ensuring nearly complete iodine recovery.  Other refinements to 
the system include a low mass Kapton resistive heater on the I2 reservoir and a 
LED/photodiode based I2 concentration detector.   

 
With very little modification to either equipment or parameters we were able to 

realize a significant gain in conversion yield as compared to the single-pass setup.  
Optimized conditions provide 64-73% decay corrected yield of [11C]CH3I based on 
trapped [11C]CO2 with >98% purity.  The high purity is attributed to cryogenically 
trapping the iodinated methane in a glass loop, releasing the [11C]CH3I while the glass 
warms, and recooling the glass before the [11C]CH2I2 is pushed to the reaction vial.  

Over the past 5 years we have seen 50-60% conversions on a daily basis.  
Maintenance is minimized by having the [11C]CH4 Poropak trap outside of the 
recirculation path, trapping iodine at -8°C, and cold trapping the [11C]CH3I on a glass 
trap.  We have routinely used this system to produce a variety of [11C] labeled PET 
tracers at or above literature yields and high specific activity (5-12Ci/umol eos). 

 
References: 

[1] Link, J., Krohn, K., Clark, J., 1997.  Production of [11C]CH3I by Single Pass 
Reaction of [11C]CH4 with I2.  Nucl. Med. Biol. 24, 93-97 

[2] Larsen, P., Ulin, J., Dahlstrom, K., Jensen, M., 1997.  Synthesis of C-11 
iodomethane by iodination of C-11 methane.  Appl. Radiat. Isot. 48, 153-157 

 
 

Figure 2: Screenshot of LabVIEW based software control panel on BIF methyl iodide rig. 
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One Year Experience With a IBA 18/9 Cyclotron Operation for F-18 FDG 
Rutin Production  

Nicolini J; Ciliberto J; Nicolini M A; Nicolini M E;  Baró G; Casale G;  Caro R; Guerrero G; 
Hormigo C; Gutiérrez H; Pace P; Silva L  

Laboratorios Bacon S.A.I.C. Ururuguay 136 –B1603DFD- Villa Martelli, Bs. As. Argentina  

This paper tries to encourage those countries that still do not have an industrial production system 
to supply FDG to PET centers. We show a compilation of performance data, maintenance and 
production yield. With the statistical analysis of these data we conclude that the whole system is 
robust and effective. This work also shows graphic performance of the ion source before and after 
maintenance and repositioning, and also performance of targets and chemical process yields. we 
include the layout of the installation which was designed to have visual control of the important 
areas from the control room of the cyclotron. 
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Comparison of [11C]CH3I yields from 2 in-house Methyl Iodide 
Production systems  –  Does size matter? 

Salma Jivan, Ken R. Buckley, Wade English & James P. O’Neil1 
UBC/TRIUMF PET Program, 4004 Wesbrook Mall, Vancouver, B.C., Canada             
1Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, U.S.A. 

 
	
   The TRIUMF/PET Program is largely reliant on carbon-11 tracers for neurology studies.  
The reliability and high specific activity radiotracers are key components to the success of the 
program.  Recently, we experienced low in-target [11C]CH4 yields which prevented us from 
synthesizing certain low radiochemical yield tracers.  To circumvent the problem, a new module 
was constructed.  We report our conversion yields obtained from 2 in-house built CH3I modules 
and describe the changes made between the two systems. 
 [11C]CH4 is produced in a niobium target as previously described(1).  The target contents 
and helium flushes (approximately 1.5 litres) are transported 50 metres in 3.2 mm stainless steel 
tubing to a hotcell in the radiochemistry lab that houses the CH3I module.  The target contents 
pass through phosphorous pentoxide to trap ammonia formed in target and are collected on 2 
grams of Poropak N cooled at -196°C.  Helium is used to flush nitrogen and hydrogen off the trap 
upon warming.  After flushing, the recirculating pump is started and the [11C]CH4 is pumped 
through a 720°C quartz tube containing iodine vapour.  An ascarite trap (9.5mm OD x 7mm ID x 
12cm length) is placed between the quartz tube and CH3I trap which is packed with 0.2 grams of 
Poropak N.  Recirculation proceeds until the radiation level on the CH3I detector levels off.  The 
trap is heated to 180°C and helium elutes the [11C]CH3I into precursor solution or solvent for 
quantifying CH3I. 
 
Methyliodide Systems Description 
 The first TRIUMF gas phase recirculating [11C]CH3I system built in 1996 was based on 
works by Link and Larsen (2,3) with minor modifications.  Our first system had a 19mm OD x 
16.5mm ID x 30.5cm length quartz tube placed in a 15 cm horizontal oven.  The I2 vapour source 
was a heated side arm near the head of the quartz tube and temperature was varied from 50°C to 
90°C to maintain a constant I2 concentration.  A copper coil with running water was placed at the 
end of the quartz tube to condense iodine and prevent migration through the system.  System 
pressures during recirculation ranged from 2 to 4 psi and flows were 250-300ml/min for a period of 
6 minutes.  The [11C]CH4 trap was in the recirculation loop for this system.  The conversion yields 
of [11C]CH3I averaged 20% decay corrected based on [11C]CH4 production.  The system worked 
reliably and made enough dose for injection until we experienced target problems and low yields 
from our Niobium target.  With high demand for scanning tracers to be shared with multiple 
scanners, the need for another CH3I system was pushed forward.   

The new system was built with the same model oven rotated into a vertical orientation with 
a 12.75mm OD x 10.5mm ID x 38cm length quartz tube as the reactor and the flow upward 
through the tube.  The I2 is now inside a heated portion of the quartz tube (2.5 cm band heater set 
at 50°C) and sees the flow path directly.  A Peltier cooler is used to condense and trap the I2 vapor 
exiting the oven to prevent migration through the system.  The relatively large volume diaphragm 
Cole Parmer pump from the original system was replaced with a micro diaphragm KNF pump as 
the recirculation pump.  The system volume was further reduced by replacing the 3.2 mm stainless 
steel tubing to 1.6 mm teflon tubing where possible. Tubing from the outlet of the quartz tube to the 
ascarite trap was kept to 3.2 mm due to iodine plating out and causing high pressure and plugging 
of the system. Fittings were changed to PFA from stainless steel where possible to prevent 
corrosion in the system.   The major difference between the two systems was the recirculation 
path.  After CH4 trapping, the trap contents were pressurized into the quartz tube.  The CH4 trap 
was isolated from the recirculation path and [11C]CH4 was recirculated for 3.5 minutes at a flow rate 
of 300 to 400ml/min.  Pressures during recirculation ranged between 9 and 12 psi.   
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Results and discussion 
The original CH3I system provided conversion yields averaging 20%.  Due to poor trapping 

of I2 after the oven, the ascarite trap was changed between every run, while the I2 pot was topped 
up every 20 runs.  The system was given a complete cleaning after 60 runs.    Upon cleaning of 
traps, it was found that the CH3I Poropak packing appeared light yellow in colour proving the 
breakthrough of iodine and preventing efficient [11C]CH3I trapping.  It was also noticed that the 
counts on the CH4 trap radiation detector would rise during recirculation confirming breakthrough of 
the formed product.  With routine maintenance of the system, high specific radioactivity was 
maintained and the mass of CH3I produced ranged from 5 to 10 nmols. 

With the new system we find the conversion yields increased close to 2 fold and averaged 
40% with measured masses of CH3I ranging between 15 and 25 nmols.  We replace the ascarite 
trap at the beginning of each production day and can perform up to 6 batches with short 
turnaround time of 20 minutes.  The iodine is scraped down the quartz tube for re-use periodically 
as the vapor concentration decreases thus avoiding the need to add fresh iodine. The system 
currently has operated with 100 runs without any intervention or I2 filling.  

A smaller recirculation volume allows for larger number of passes of [11C]CH4 through the 
reaction chamber over the same time period.  The original system had a recirculation cycle time of 
40 sec per pass providing approximately 10 to 12 passes for the given 6 to 8 minute recirculation 
time whereas the new system has a recirculation cycle time of 10 sec per pass providing 
approximately 18 to 24 passes in the 3 to 4 minute recirculation step.  In addition, the removal of 
the CH4 trap from the recirculation system avoids buildup, and therefore the loss, of any [11C]CH3I 
not trapped or bled from the [11C]CH3I trap. In conclusion, the changes made to the new system 
with smaller recirculation volume improved the conversion yield of the system. 
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1. Buckley, K.R., Jivan, S., Ruth, T.J., 2004.  Improved yields for the in situ production of [11C]CH4 using a niobium 
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Photograph of New TRIUMF [C11]methyliodide module.  
Note the vertically mounted quartz tube in the oven, band 
heater for iodine vaporization below and Peltier cooling unit 
for iodine trapping above. 

Lookout Screen capture of new system.  The graph trends target 
pressure, flow rate and pressure in recirculating loop, radiation 
detector values for methane trap, methyliodide trap and product. 
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Cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction 

K. Gagnon1, F. Bénard2, M. Kovacs3, T.J. Ruth4, P. Schaffer4, and S.A. McQuarrie1 

1 Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA 
2 BC Cancer Agency, Vancouver, BC, CANADA 
3 Lawson Health Research Institute, London, ON, CANADA 
4 TRIUMF, Vancouver, BC, CANADA 

Introduction: In light of the current world-wide shortage of reactor-produced 99Mo/99mTc, there is a 

growing interest in exploring the large-scale cyclotron production of 99mTc via the 100Mo(p,2n)99mTc 

reaction (a method first proposed by Beaver and Hupf, J Nucl Med, 1971, 12: 739). In producing 
99mTc, knowledge of the cross sections and theoretical yields are essential for optimizing the high-

current irradiation conditions and verifying the processing/recovery techniques. A review of the 

existing published cross section data for the 100Mo(p,2n)99mTc reaction however reveals large 

discrepancies in these measured values.  

Aim: Given the large cross section discrepancies in the current literature, the goal of this work was 

to re-evaluate the cross sections for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions. 

Methods: The 99mTc and 99Mo cross sections were evaluated using both natural abundance (7.5 

mg/cm2) and 100Mo enriched (97.42%, 7.4–11.1 mg/cm2) foils. Foils were individually irradiated with 

proton energies up to 18 MeV for 600 seconds on the Edmonton PET Centre’s TR 19/9 variable 

energy cyclotron (Advanced Cyclotron Systems Inc., Richmond, BC). A copper foil was in place for 

all irradiations for the purpose of monitoring the beam energy and irradiation current. Unless 

otherwise noted, all decay data were obtained from the NuDat 2.5 database. 

The molybdenum foils were assayed multiple times (from a few hours to several days post-EOB) 

using an HPGe detector (sample distance ≥ 25 cm, dead time < 7%). The detector was calibrated 

using standard sources of 22Na, 54Mn, 57Co, 60Co, 109Cd, 133Ba and 137Cs. The 99Mo activity was 

determined using a weighted average of the 181 keV and 739 keV peaks. In determining the 99mTc 

activity, the non-resolved 140/142 keV peak (89.06%/ 0.02%) was measured. Two additional 

contributing sources to the 140 keV peak were subtracted prior to evaluation of the direct 99mTc 

cross section. Firstly, as 99Mo decays to 99mTc, the 99Mo associated 99mTc activity at the start of 

counting was determined from the measured 99Mo activity using the radioactive parent-daughter 

relationship described by Attix (Introduction to Radiological Physics and Radiation Dosimetry, 

2004, pp. 105–106) with the branching ratio to 99mTc taken as 87.6% (Alfassi et al., Appl Radiat 

Isot, 2005 63: 37). Next, as 99Mo gives rise to a 140 keV (4.52%) gamma ray upon decay, this 

peak contribution was calculated from the measured 99Mo activity of each respective foil. Cross 

sections were calculated using the standard activation formula (Krane, Introductory Nuclear 

Physics, 1988, pp. 169–170) with values normalized to 100 percent 100Mo enrichment.  

Thick target yields were calculated from the measured 99mTc cross sections assuming 100 percent 
100Mo and fitting the cross-section data with a 2nd order polynomial. Values are reported for 18�10 

MeV, and 22�10 MeV (cross sections extrapolated to 22 MeV from a polynomial curve fit). 

Results: The following figures compare the evaluated cross sections for the direct production of 
99mTc and 99Mo to previously published cross section data. For the purpose of comparison, we 

have normalized the 99mTc data of Challan et al. (Nucl Rad Phys, 2007, 2: 1) to 100 percent 100Mo 

by dividing by 9.63%. For both reactions, our results are in good agreement to values published by 

Levkovskij (1991). Good 99mTc cross section agreement is also noted up to Ep ~12 MeV when  
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comparing with Lagunas-Solar (IAEA-TECDOC-1065, 

1999) and Challan et al. We believe that the elevated 
99mTc cross sections for Lagunas-Solar for Ep > ~12 

MeV may be attributed to the incomplete subtraction of 

the 99Mo 140 keV peak contributions due to 

underestimated 99Mo cross sections. Although Challan 

et al. mention that they have corrected for the growth 

and decay of the metastable and ground states, it is 

unclear if the 99mTc 140 keV peaks were corrected to 

account for 99Mo�99mTc contributions post-EOB. The 

absence of such a correction would similarly explain 

the elevated 99mTc cross sections for Ep > ~12 MeV. 

While the 99Mo cross sections are in good agreement, 

the 99mTc cross sections measured in this work are 

significantly higher than values published by Takács et 

al. (J Radioanal Nucl Chem, 2003, 257: 195) and 

slightly higher, by approximately 2σ, than values 

presented by Lebeda and Pruszynski (to be published 

in Appl Radiat Isot). An overall disagreement was noted for 

both reactions when comparing with the published cross 

sections of Scholten et al. (Appl Radiat Isot, 1999, 51: 69). 

Throughout this experiment the beam current and detector 

efficiency were carefully monitored and we are confident 

with the 140 keV peak area corrections performed in this 

experiment as the evaluated 99mTc cross sections were 

consistent, independent of the time post-EOB upon which 

they were evaluated (i.e. calculated within a few hours 

post-EOB or >24 hours post-EOB).  

Thick target yields were determined to be 14.2 mCi (526 

MBq)/µAh for 18�10 MeV, and 18.2 mCi (674 MBq)/µAh 

for 22�10 MeV. These yields are higher than the value  of 

11.2 mCi (415 MBq)/µAh for 22�12 MeV reported by 

reported by Scholten et al., and are in good agreement 

with the value of 17 mCi (629 MBq)/µAh for 25�5 MeV given by Takács et al.  

As we are not only interested in optimizing the yield of 99mTc, but also the purity, future work is 

planned to experimentally evaluate the 100Mo(p,2n)99gTc cross sections. Preliminary calculations 

using cross sections modelled with Empire–II suggest that a 99mTc/99m+99gTc ratio of 18% is possible 

for a 3 hour irradiation at 22�10 MeV. In comparison, assuming a 24 hour elution frequency and 

5% retention, the 99mTc/99m+99gTc ratio calculated for the standard generator setup is 26% (Alfassi et 

al., Appl Radiat Isot, 2005 63: 37).   

Conclusion: We have presented updated cross sections for the 100Mo(p,2n)99mTc and the 
100Mo(p,pn)99Mo reactions. Results of this work suggest that production of large quantities of 99mTc 

via a cyclotron may be a viable alternative to the current reactor-based production strategy. 

Acknowledgements: The authors would like to thank Advanced Cyclotron Systems, Inc. This 

work was supported through a grant from NSERC/CIHR (MIS 100934). 
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Figure 1. Whole-body scintigrams of two rats 2 h after 
administration of: 90 MBq of 99mTc-pertechnetate; 34 MBq of 99mTc-
MDP; 15 MBq of 99mTc-MIBI, prepared from cyclotron- (right image) 
and generator-produced 99mTc (left image). 

Cyclotron Production of 99mTc 
 

A. Zyuzin1, B. Guérin2, E. van Lier1, S. Tremblay2, S. Rodrigue2, 
J.A. Rousseau2, V. Dumulon-Perreault2, R. Lecomte2, J.E. van Lier2 

1Advanced Cyclotron Systems Inc., Richmond, BC, Canada 
2Sherbrooke Molecular Imaging Center, Université de Sherbrooke, QC, Canada 

 

Introduction.  Current global interruptions of 99Mo supply, aging reactors, and the staggering costs 
of their maintenance have accelerated the search for alternative sources of 99mTc. Direct production 
of 99mTc via 100Mo(p,2n)99mTc nuclear reaction can be considered as one of such alternatives. The 
feasibility of 99mTc production with a cyclotron was first demonstrated in 1971 by Beaver and Hupf1 
and confirmed by a number of researchers.2,3,4,5 Мeasured yields indicate that up to 2.1 TBq (56 Ci) 
of 99mTc can be produced in 12 h using a 500 μA 24 MeV  cyclotron. This amount will be sufficient 
to cover population base of 5-7 million assuming: 15 % 99mTc losses, an average injected dose of 
25 mCi and a 10 hrs decay. Initial results of the target development and thick target yields are 
presented in the “Mo-100 development for direct Tc-99m Production” abstract. In this work we 
compared the chemical and radiochemical properties and in vivo behavior of cyclotron- and 
generator-produced 99mTc.6 

 
Experiment. Targets, 6-mm diameter discs, were prepared by melting 100Mo pellets (99.54% 
enrichment) onto tantalum backing supports. Targets were bombarded for 1.5–3 h with 15.5–17.0 
MeV protons (14–52 μA), using a TR-19 cyclotron (ACSI).  After bombardment, 100Mo targets were 
partially dissolved and purified by the method of Chattopadhyay et al.7 The radionuclide purity of 
the 99mTc was >99.99%, as assessed by γ-spectroscopy, exceeding USP requirements for 
generator-based 99mTc. Although small peaks corresponding to 99Mo were observed in the initial 
solute, these were not detectable in the purified 99mTc-pertechnetate solution. Minute amounts of 
97Nb were also quantitatively separated from during target processing. The content of other 
technetium isotopes was measured after allowing sufficient time (4 days) for 99mTc decay. The 
presence of 0.0014% 96Tc and 0.0010% 95Tc at the end of bombardment, was below USP 
requirements of 0.01% for generator-produced 99mTc. No other radionuclidic impurities were found. 
The radiochemical purity of cyclotron-produced [99mTc]TcO4

–, as determined by instant thin-layer 
chromatography was >99.5%, well above the USP requirement of 95%. The content of ground state 
99gTc (T½ = 2.1 × 105 years) was not determined in these experiments and is one of the tasks for 
future work. For imaging studies, both cyclotron- and generator-produced 99mTc were formulated as 
3 different radiopharmaceuticals: 99mTc-pertechnetate for thyroid imaging, 99mTc-methylene 
diphosphate (99mTc-MDP) for bone scanning, and 99mTc-hexakis-2-methoxyisobutyl isonitrile 
(99mTc-MIBI) for heart imaging. These radiopharmaceuticals account for more than 75% of all 
routine 99mTc scans currently used in diagnostic nuclear medicine. The latter two 
radiopharmaceuticals were prepared using commercially available kits. Labeling efficiency for the 
bone imaging agent 99mTc-MDP and heart imaging agent 99mTc-MIBI were 98.4% and 98.0%, 
respectively, well above USP requirements of >90%. 
 
Animal Scans. The bio-distributions of 
99mTc-pertechnetate, 99mTc-MDP, and 
99mTc-MIBI, prepared with either 
cyclotron- or generator-produced 99mTc, 
were assessed in a healthy rat model. 
For each experiment 2 animals were 
simultaneously injected with a 0.3-mL 
physiologic saline solution containing 34–
90 MBq of the selected 99mTc-
radiopharmaceutical, prepared either with 
cyclotron- or generator-produced 99mTc. 
Dynamic acquisitions were continued 
over a 2 h period. At the end of scanning, 
the rats were killed and dissected to 
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measure activities of target tissues. Static images obtained 2 h after administration of each of these 
99mTc-radiopharmaceuticals show matching 99mTc distribution patterns, clearly delineating the 
thyroid with 99mTc-pertechnetate, skeleton with 99mTc-MDP, and heart with 99mTc-MIBI (Fig. 1). 
Uptake kinetics calculated over the target organs (thyroid, bones, and heart), show identical uptake 
patterns for the cyclotron- and generator-produced 99mTc-radiopharma-ceuticals (Fig. 2). Tissue 
activities from dissected samples collected 30 min after the end of imaging with 99mTc-MDP and 
99mTc-MIBI also show matching patterns between cyclotron- and generator-derived 99mTc 
preparations (Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion. The results of these in vivo experiments and quality control tests support the concept 
that cyclotron-produced 99mTc is suitable for preparation of USP-compliant 99mTc 
radiopharmaceuticals. Establishing decentralized networks of medium energy cyclotrons capable of 
producing large quantities of 99mTc may effectively complement the supply of 99mTc traditionally 
provided by nuclear reactors, at a fraction of the cost of a single nuclear reactor production facility, 
while sustaining the expanding need for other medical isotopes, including short-lived positron 
emitters for PET imaging.  
 
_____________________ 
1. Beaver J., Hupf H. Production of 99mTc on a medical cyclotron: a feasibility study. J. Nucl. Med. 1971;12:739-741 
2. Lagunas-Solar M C. Accelerator production of 99mTc with proton beams and enriched 100Mo targets. In: IAEA-TECDOC-

1065. Vienna, Austria: International Atomic Energy Agency; 1999:87 
3. Scholten B, et al. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl. Radiat. Isotopes. 1999;51:69-80. 
4. Takács S, et al. Evaluation of proton induced reactions on 100Mo: New cross sections for production of 99mTc and 99Mo. 

J. Radioanal. Nuclear. Chem. 2003; 257:195-201 
5.  Lebeda, O. et al. New measurement of excitation functions for (p,x) reactions on natMo with special regard to the formation of 

95mTc, 96m+gTc, 99mTc and 99Mo, Appl. Radiat. Isot., in press 
6.  Guérin, B. et al. Production of 99mTc: An Approach to the Medical Isotope Crisis J. Nuclear Med., 2010;51:13N-16N 
7. Chattopadhyay S, et al. Recovery of 99mTc from Na2[99Mo]MoO4 solution obtained from reactor-produced (n,γ) 99Mo using a 

tiny Dowex-1 column in tandem with a small alumina column. Appl. Radiat. Isotopes. 2008; 66:1814-1817 

Figure 2. Time/radioactivity curves derived from 
regions of interest drawn around target organs (Fig.1) 
Dotted line: cyclotron-produced 99mTc, Solid line: 
generator produced 99mTc. Radioactivity is expressed 
as percentage of injected dose per unit area, corrected 
for radioactive decay. 

Figure 3. Tissue uptake in healthy rats, expressed as 
percentage of injected dose per gram of tissue, 2.5 h 
after intravenous injection of 34 MBq of 99mTc-MDP or
15 MBq of 99mTc-MIBI, prepared from cyclotron-
produced 99mTc (open bars) or generator-produced
99mTc (solid bars). 
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Targets for Cyclotron Production of Tc-99m 
E.J. van Lier1, J. Garret2, B. Guerin3, S. Rodrigue3, J.E. van Lier3, S. McQuarrie4,  

J. Wilson4, K. Gagnon4,  M.S. Kovacs5, J. Burbee1, A. Zyuzin1 
1Advanced Cyclotron Systems Inc., Richmond, BC, Canada 

2Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada 
3Sherbrooke Molecular Imaging Center, Université de Sherbrooke, QC, Canada 

4 Dept Oncologic Imaging, Cross Cancer Institute, Edmonton, AB, Canada 
5 Department of Medical Biophysics, University of Western Ontario, London, ON, Canada 

 
Introduction: The measured yields of direct 99mTc production via 100Mo(p,2n)99mTc suggest that 
99mTc can be produced in quantities sufficient for supplying regional radiopharmaciesi, ii, iii, thereby 
reducing our reliance on reactor-derived 99Mo.  Cyclotron- and generator-produced 99mTc-
radiopharmaceuticals were shown to be radionuclidically, chemically and biologically equivalent, 
giving matching images and identical kinetic and biodistribution patterns in animals, indicating that 
a medical cyclotron can produce USP-compliant 99mTc-radiopharmaceuticals for nuclear imaging 
procedures.iv, v In this work, several different 100Mo target configurations were investigated and 
thick target yields were measured, validating the production of clinically useful quantities of 99mTc 
on a medical cyclotron. 
 
Target Holders: Two different solid target holders were used to measure the thick target yields of 
the 100Mo(p,2n)99mTc nuclear reaction.  The straight 90° target holder has a heat removal capacity 
of 1.5 kW and while the 30° tilted solid target holder has a heat removal capacity of 3.0 kW. Two 
different solid target holders (Advanced Cyclotron Systems Inc., Richmond, BC, Canada) were 
installed on three compact medical cyclotrons (TR-19, Cross Cancer Institute, Edmonton, AB, TR-
19 Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke QC, Canada, GE PETrace, 
Lawson Health Research Institute, London ON, Canada). 

               
             30° Solid Target Holder                                                 Straight Solid Target Holder 
  
100Mo Targetry. Molybdenum has been a metal of choice in accelerator targetry for several 
decades. With a high melting point, good thermal conductivity and chemical stability, molybdenum 
is nearly an ideal material for manufacturing high power targets. While a number of low and 
medium current cyclotron targets that use natural and enriched molybdenum isotopes have been 
developed and used for production of technetium isotopes: 94Tc, 96Tc and 99mTc vi, a reliable 
process for preparation of enriched molybdenum targets has not yet been implemented.  A 
number of standard target manufacturing techniques are being evaluated: melting, sintering, 
pressing/pelletizing, rolling, plating from solutions or molten salts, formation of low melting 
temperature Mo alloys, brazing or soldering 100Mo to a target substrate, coating molybdenum with 
a protective layer, development of a thick target, plasma sputtering and other coating techniques. 
 
Mo Target Preparation: Between 100-450 mg natural and enriched 100Mo (99.5%) were pressed 
into 6 and 9.5 mm pellets at between 25,000 N and 100,000 N.  The pellets were sintered in wet or 
dry hydrogen at 800-900ºC, and subsequently mounted into a tantalum substrate, either by 
pressing or arc melting or electron beam melting at currents between 40-70 mA with different 
sweeping / focusing patterns. 
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1. Arc Melted Mo in tantalum      2. Pressed Mo in Ta (EOB)  3. SEM of pressed Mo  
 
99mTc Production: 99mTc was produced 
via the 100Mo(p,2n)99mTc nuclear 
reaction on a 19 MeV medical cyclotron 
using an incident proton energy of 15-17 
MeV at current between 14-52 μA. After 
bombardment targets were subjected to 
electrochemical dissolution, 99mTc was 
purified by ion-exchange 
chromatography and recovered as 
pertechnetate.                            Electron beam melting of Mo to Tatarget substrate 
 
Results: Up to 44.7 GBq (1.2 Ci) (EOB) of 99mTc was produced after a 6-h bombardment at 16.4 
MeV and 39 μA. This corresponds to a thick target production yield of 0.25 GBq/μA/h (6.8 
mCi/μA/h) and 2.3 GBq/μA (63 mCi/μA) at saturation and is in good agreement with literature 
data.I, II, III  The radionuclide purity of the cyclotron-produced 99mTc was >99.99%, as assessed by γ 
spectroscopy, exceeding USP requirements for generator-based 99mTc. The content of other 
technetium isotopes was measured after allowing sufficient time (4 days) for 99mTc decay and was 
below USP requirements of 0.01% for generator-produced 99mTc. No other radionuclidic impurities 
were found. The radiochemical purity of cyclotron-produced 99mTcO4

– was >99.5%, well above the 
USP requirement of 95%.   
 
Conclusion: This study confirms that clinically useful quantities of 99mTc can be produced on 
medical cyclotrons installed worldwide. Extrapolating these results to the optimal energy of 22-24 
MeV indicates that over 2 TBq of 99mTc can be produced daily for regional distribution on a high-
current medium-energy cyclotron. Implementing networks of high-current medium energy 
cyclotrons would reduce reliance on nuclear reactors and attenuate the negative consequences 
associated with the use of fission technology.  
                                                 
i Scholten, B., Lambrecht, R.M., Cogneau, M., Vera Ruiz, H., Qaim, S.M., 1999. Excitation 
functions for the cyclotron production of 99mTc and 99Mo. Appl. Radiat. Isotopes 51, 69–80 
ii Takács, S.; Szűcs, Z., Tárkányi, F.; Hermanne, A.; Sonck, M Evaluation of proton induced 
reactions on 100Mo: New cross sections for production of 99mTc and 99Mo, J. of Radioanalytical and 
Nuclear Chemistry, 257,1 , 2003, 195-201(7) 
iii Lebeda, O.; Pruszynski, M.: New measurement of excitation functions for (p,x) reactions on 
natMo with special regard to the formation of 95mTc, 96m+gTc, 99mTc and 99Mo, Appl. Radiat. Isot., in 
press, (personal communication) 
iv Guérin, B.; Tremblay, S; Rodrigue, S.; Rousseau, J.A.; Dumulon-Perreault, V.; Lecomte, R.; van 
Lier, J.E.; Zyuzin, A.; van Lier, E.J. Cyclotron Production of 99mTc: An Approach to the Medical 
Isotope Crisis J. Nuclear Med., 2010;51:13N-16N 
v Zyuzin, A.; Guérin, B.; van Lier, E.J.; Tremblay, S; Rodrigue, S.; Rousseau, J.A.; Dumulon-
Perreault, V.; Lecomte, R.; van Lier, J.E.; Cyclotron production of 99mTc WTTC 13, Abstract  
vi Qaim, S.M., Production of high purity 94mTc for positron emission tomography studies, Nuclear 
Medicine and Biology, 27, 4, 2000, 323-328 
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A further exploration of the merits of a Niobium/Niobium vs 
Niobium/Havar target body/foil combination for [18F]Fluoride production: 
A detailed HP γ-spectrometry study 

John Sunderland, G Leonard Watkins, Colbin E Erdahl, Levent Sensoy, Arda Konik 
PET Imaging Center, University of Iowa Health Care, Iowa City, IA 52242, USA 
 
 In the current nuclear medicine environment, both the Molybdenum crisis and FDA regulation, 
are driving the PET community to look more closely at the production of [18F]NaF for PET imaging.  
This situation has led the University of Iowa to design and construct a targetry unit and a 
synthesis/purification module designed to obtain highest purity [18F]NaF.  In this study we 
investigate the radionuclidic purity of [18F]NaF from this module with [18F]NaF produced from both a 
Nb/Havar and Nb/Nb target/body combination.  The rationale for the targetry comes from the 
recent observations of the Wisconsin and Edmonton groups1, 2, 3. 

 As can be seen from the schematic in Figure 2 [18O]H2O was irradiated in a Nb target body 
equipped with either a Nb or Havar front foil. The target water was emptied into a target collection 
vessel (TCV).  Under N2 overpressure the contents were passed sequentially through a CM cation 
SPE cartridge and a QMA anion SPE cartridge to an [18O]H2O recovery vessel. Any non-anionic 
material was then flushed from the QMA with water (5 mL) to waste. The [18F]NaF and any other 
anionic species were the eluted into the final product vial with isotonic saline (15 mL).  

 To assess radionuclidic purity, the Nb/Niobium body/foil combination was bombarded at 30 µA 
for 5, 10, 20 and 80 minutes.  The Nb/Havar body/foil combination was bombarded at 30 µA for 80 
minutes.  In all cases the TCV, CM, QMA, and Product Vial were quantitatively assessed for 
radionuclidic content using an GEM20P4-70. ORTEC GEM Coaxial P-type HPGe Gamma-Ray 
Detector.  Results are summarized in Figure 2. 

 The Nb-Nb body/foil combination spectrum was simple; 30 µA for 10 minutes created minute 
quantities of 56,57,58Co and 52Mn (<0.1 nCi) from the trace quantities of iron and chromium in the Nb 
foil, but approximately 1 µCi of 93mMo from the 93Nb(p,n)93mMo reaction (Figure 1).  The CM cation 
cartridge quantitatively bound the cobalt isotopes, while the 93mMo, initially trapped by the QMA 
anion cartridge, eluted quantitatively with the [18F]NaF. Under similar conditions, the Nb/Havar 
body/foil created 12 radionuclides at 10-100 nCi levels. The CM/QMA cartridge combination served 
to eliminate 6 of 12 contaminants, and reduce the quantities of the remaining nuclides 
substantially, but not completely.  The product vial from the Nb/Nb combination had only 93mMo, 
while the product vial from the Nb/Havar target resulted in [18F]NaF with 51Cr,  95,96Tc,181,182Re, and 
93mMo (from Nb target body) contaminants with activities ranging from 1-30 nCi. 

References: 
1.  SJA Nye, MA Avila-Rodriguez & RJ Nickles. ”A grid-mounted niobium body target for the production of reactive [18F]fluoride”. Appl. 
Radiat. Isot. (2006);64:536-539 

2.  JS Wilson, MA Avila-Rodriguez, & SA McQuarrie. “Ionic contaminants in irradiated [18O]water generated with Havar and Havar-Nb 
foils”. Abstract Book: 12th International Workshop on Targetry and Target Chemistry, Seattle, 2008: pp31-33.  

3. MA Avila-Rodriguez, JS Wilson and SA McQuarrie. "A quantitative and compararative study of radionuclidic and chemical impurities 
in water samples irradiated in a niobium target with Havar vs niobium-sputtered Havar as entrance foils". Appl. Radiat. Isot. (2008);66: 
1777-1780 
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A multi-wire proportional counter for measurement of positron-emitting 
radionuclides during on-line blood sampling 
 
H. T. Sipila1, A. Roivainen1 and S-J. Heselius2  
1 Turku PET Centre, Turku University Hospital, P.O. Box 52, FI-20520 Turku, Finland 
2 Turku PET Centre, Accelerator Laboratory, Porthansgatan 3, FI-20500 Turku, Finland 
 
Introduction. Pharmacokinetic analyses of PET data require the exact determination of the 
input function, i.e. the determination of radioactivity concentrations in blood and plasma. Silicon 
diodes have been used for the measurement of blood radioactivity during PET imaging of 
rodents [1].  Conventional BGO detectors are widely used for blood radioactivity measurements 
in human studies (Allog Ab, Sweden). The purpose of the present study was to develop a flow-
through multi-wire proportional counter with high sensitivity for positrons emitted from the 
commonly used positron emitters 11C, 15O, 18F and 68Ga. The proportional counter used in this 
work was a multi-wire flow-through detector filled with argon-methane gas (P10). The detector 
system was tested for measurements of 11C, 15O, 18F and 68Ga with mean positron energies in 
the energy interval 250 - 830 keV. Although the sensitivity of a gas-filled detector is low for 511 
keV photons, positrons in the mentioned energy range will give an efficient signal when they 
interact with the detector fill gas. This type of detector requires only light lead shielding and the 
detector system can be installed very close to the animal or patient. The detector was used in 
studying time-activity curves in rats after i.v. injection of [15O]water. Our measurements indicate 
that the conventional proportional counter technique is useful for routine on-line analyses of 
blood samples obtained during PET studies of rodents and humans.    
 
Materials and Methods. The multi-wire proportional counter (Fig. 1) was constructed in our 
laboratory. The electronics was purchased from Oxford Instruments Analytical Oy (Finland).  
The detector was equipped with an aluminium tube window (thickness 100 µm, diameter 13 
mm, length 78 mm). The detector was filled with argon-methane gas (P10) and closed at 1060 
mbar pressure. The counter electronics, preamplifier, linear amplifier and high-voltage power 
supply were all placed in the same aluminium box. The counter A/D converter and software for 
data collection were custom made. The detector was shielded with 50 mm of lead (25 kg). The 
background count rate was 2-4 cps. The stability and working conditions of the detector were 
tested with a 241Am X-ray source. The performance of the multi-wire proportional counter was 
tested with known activities of 11C, 15O, 18F and 68Ga in water solutions. Oxygen-15 was 
produced with the Cyclone 3 cyclotron (IBA, Belgium) of the Turku PET Centre. [15O]water was 
produced with a Hidex Radiowater Generator (Hidex Oy, Finland). 11C and 18F sources were 
produced with the MGC-20 and CC-18/9 cyclotrons of the Turku PET Centre. 68Ga-chloride 
solution was obtained from a 68Ge/68Ga generator (Obninsk, Russia). 
 
The rats were anesthetized with isoflurane. [15O]water (50 - 60 MBq, 500 µL) was manually 
injected via tail vein using a cannula. The blood sampling tube (Teflon, i.d. 0.5 mm, o.d. 1.0 mm) 
was installed through the detector. A peristaltic pump was used for blood sampling from the 
arteria femoralis. The blood-flow rate through the detector was 500 µL/min. The animals were 
placed in a PET scanner (HRRT, Siemens) in order to get a reference input function from the 
heart left ventricle. 
 
Results and Discussion. Fig. 2 shows the detector efficiency as a function of the mean energy 
of positrons. The radionuclides 11C, 15O, 18F and 68Ga in water solutions in the Teflon tubing (i.d. 
1.5 mm, o.d. 2.5 mm) were used as positron sources. The graph reflects a linear relationship 
between the detector efficiencies and the mean energies for positrons of the four radionuclides 
(R2 = 0.9982). The multi-wire proportional counter responses to 11C, 15O, 18F and 68Ga activities 
in the Teflon tubing are shown in Fig. 3. The detector response was linear for 15O in the range 5 
- 80 kBq/mL with the i.d. 1.5 mm Teflon tubing and in the range 100 - 1300 kBq/mL with the i.d. 
0.5 mm Teflon tubing. These ranges cover the radioactivity concentrations for both human and 

227

kmje
Typewritten Text
Abstract 041



rat studies. Radioactivity levels in humans are about 20 times lower but still well above the 
signal to noise level.  
 
Blood time-activity curves (arteria femolaris) were recorded for [15O]water in rat studies. Our 
results show that a multi-wire proportional counter setup can be used for measurements of 
blood time-activity curves in PET studies with [15O]water. Blood radioactivities with injection of 
11C, 18F and 68Ga labelled tracers can also be measured. The detector efficiency for 18F is low 
(0.9 - 4.0 %, depending on wall thickness and i.d. of sampling tubing), which limits the use of the 
detector in 18F applications. Taking into account the abundance of positron decay of 68Ga (86%) 
the actual detector efficiency for 68Ga is slightly less than for 15O (positron decay 100%).   
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Fig. 1. Exploded view of multi-wire proportional counter.  Fig. 2. Detector efficiency versus mean energy of 
positrons. Radionuclides 11C, 15O, 18F and 68Ga were 
used as positron sources. 
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Fig. 3. Multi-wire proportional counter response to 11C, 15O, F and 68Ga activities in Teflon tubing.  
 
Reference. 1. Jean-Marc Reymond, David Guez, Sophie Kerhoas, Philippe Mangeot, Raphael Boisgard, Sebastien 
Jan, Bertrand Tavitian and Regine Trebossen, Nuclear Instr. Meth. A571 (2007) 358–361. 
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Liquid target system for production of 86Y 

Jan Ráliš, Ondřej Lebeda and Josef Kučera 
 

Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, public research 
institution, Husinec-Řež 130, 250 68 Husinec-Řež, Czech Republic 

 
Introduction Radionuclide 90Y is a widely used tool for cancer therapy due to its suitable half-
life, ready availability in high specific activities at relatively low cost. As it is a pure β−- emitter 
with no associated γ rays, there is a need for a tracer of 90Y. Promising candidate for these 
purposes is 86Y, since it is a positron emitter with half-life of 14.74 h. This radionuclide has 
been usually produced by the (p,n) reaction on enriched 86Sr solid targets (SrCO3) [1]. 
Handling and processing of those targets have several disadvantages. There is an 
interesting alternative to this approach, namely irradiation of a liquid target filled with 
aqueous solution of strontium nitrate [2]. It makes the target processing significantly easier 
and allows for automation of the process. Separation step can be also simplified, since usual 
electrolysis can be replaced by filtration of yttrium colloid in alkaline milieu [3]. 
 
Materials and methods Strontium carbonate (96.3% 86Sr) was purchased from JV Isoflex, 
Moscow. Trace select ultra grade HNO3, HCl and NH4OH were purchased from Sigma-
Aldrich. Puratronic grade (NH4)2CO3 was purchased from AlfaAesar. High purity de-ionized 
water was used (specific resistance 18.2 MΩ/cm). 

The main part of target asembly was water cooled chamber (volume 2.4 ml) made out of 
pure Nb with Ti entrance foil. The concentration of irradiated solution of strontioum nitrate 
was 35% (w/w). After irradiation, the solution was transfered to separation unit, target was 
washed with 10 mM nitric acid and water. All parts were collected together, pH was set to 10, 
filtered through PVDF filter and washed with 50 ml water. Filtrate was collected for Sr 
recovery. Yttrium was eluted from the filter with 10 ml 1M HCl. Eluate was evaporated to 
dryness and re-disolved in 100–300 µl of 0.05M HCl as a stock solution for labelling. 

Radionuclidic purity and activity of produced yttrium was measured with γ-ray 
spectrometry (HPGe detector GMX45, Ortec).  

Content of chemical impurities (for 86Y – Fe, Cu, Zn, Al, 86Sr) was determined via ICP-MS 
at the Institute of Chemical Technology Prague. We used two alternative methods for 
determination of the purity of the produced 86Y: differential pulse voltametry and labelling 
efficiency of DOTATOC. Ca. 40 MBq of 86Y stock solution was mixed with 20 µg of 
DOTATOC in 300 µl of 0.4 M sodium acetate and heated in for 30 min at 80 °C. The labelling 
yield was monitored with TLC, using silica gel plates (Merck, Germany) developed with 10 % 
NH4OAc aq. / MeOH = 1:1, Rf = 0.46, and measured on a Cyclone autoradiography system 
(Perkin-Elmer). 

Enriched 86Sr was recovered by precipitation of strontium carbonate with ammonium 
carbonate [1]. The precipitate was decanted with water and acetone. Strontium carbonate 
was than dissolved in concentrated nitric acid, evaporated to dryness and re-dissolved in 
water for further irradiations. 
 
Results The yield of irradiation was 33 MBq/µAh. It corresponds well to the published data [1] 
and given content of 86Sr in the target matrix. Radionuclide purity was excellent (86Y>99.4 %, 
87Y<0.55 %, 88Y<0.025 %). Separation yield was more than 90 %, about 4–5 % is left on the 
filter. Less than 0.1 % of 86Y stays in filtrate. Also losses during evaporation of 1M HCl are 
under 1 %. Table 1 shows comparison of methods used for determination of copper 
concentration as a example of impurity. Labelling efficiency reflects well the copper 
concentration. 
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 2

TABLE 1 Comparison of different analytical methods for estimating the copper content in the 
product 
 

Batch Polarography 
[µg/ml] 

ICP-MS 
[µg/ml] 

Labelling 
efficiency 

1 8.7 8.9 51.0 % 
2 5.7 5.3 77.3 % 
3 0.5 0.4 96.6 % 

 
Recovery of enriched strontium was nearly quantitative, all solution used in recycling 

process were collected and reprocessed. 
 

Discussion/Conclusion This work presents a compact, fully automated system for production 
of 86Y in activity and quality suitable for radiopharmaceuticals production. Transport of 
irradiated target matrix via a capillary to a separation unit minimizes problematic handling of 
radioactive material and losses of expensive enriched 86Sr. It also reduces significantly 
personnel radiation burden. 
 

Acknowledgement The project was supported by Nuclear Physics Institute under the NPI 
research plan AV0Z10480505 and Ministery of Education, Youth and Sports, grant no. 
2B061665. 
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Can Half-life Measurements Alone Determine Radionuclidic

Purity of F-18 Compounds?

Thomas Jørgensen1, Mille Ankerstjerne Micheelsen2, and Mikael Jensen1

1Hevesy Lab, Risoe-DTU,Technical University of Denmark, DK-4000 Roskilde, Denmark
2Dept.Clinical Physiology and Nuclear Medicine, Koege Hospital, DK-4600 Koege, Denmark

Current revisions of monographs for F-18 pharmaceuticals in the European Pharma-
copoeia call for a radionuclidic purity (RNP) of or better than 99.9%. If (debatably)
this requirement is put at end of shelf life, typically 10 hours EOS , the requirement can
be very difficult to assure by actual measurements, if all possible radionuclide contam-
inations should be considered. Clearly, gamma spectroscopy can do much, but only if
the contaminant has strong gamma emissions above 511 keV. We have tried to analyse
mathematically to what extent that half-life measurements alone can establish RNP for
F-18 compounds. The method could in principle be extended to other isotopes. The
current method of half-life determination in the Ph.Eur with two measurements at 6h
interval is not sufficient nor effective for testing the required RNP level.

We present a theoretical model leading to a practical procedure for testing RNP of
F-18 compounds with a confidence of 95%.

We look at a batch of F-18 contaminated with one other isotope with a half-life of
βT18F . The contamination level is α at time 0. The recorded number of counts, N(t),
for a sample, that contains one other isotope, is described by

N(t) =
N(0)

(1 + α)

((
1

2

)t/T18F
+ α

(
1

2

)t/βT18F)

with N(0) as the total number of counts at t = 0.
RNP is defined by the expression

RNP =
A18F

Atot
⇒ RNP (0) =

1

1 + α
' 1− α, α =

A18F (0)

Aother(0)

If all measured impulses are converted to initial point values (t = 0 min.), the curve
should give a straight line with constant value (the initial value of counts) for a pure
F-18 sample. Due to the stochastic nature of the F-18 nuclide, the data points will
deviate from this line. If the sample is contaminated the curve will increase rapidly.
The condition for the pure and unpure curves to be separated is, the difference of the
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measurements must be equal to (or larger than) the sum of 1.96 standard deviations for
the two curves (confidence of 95%). An approximated expression for the limit of α is

α '
3.92

(
1
2

)t/2T18F√
N(0)

((
1
2

)t/βT18F − (12)t/T18F )
In the figure below a contour plot of RNP(0) (' 1 − α) is plotted against β and

recording time for a total amount of initial counts of 106 (the limit of the Liquid Scintil-
lation Counter). We can readily see that after 6 hours, we cannot detect a contamination
with α ≤ 0.1% (RNP(0) ≥ 99.9%), but after another 6 hours we should be able to detect
a RNP(0) of 99,95% or smaller (for β = 20). However at very low β values there is a
strong divergence in the time needed to detect these small RNP’s, which in practice sets
a lower limit for a detectable β. In the case below this lower β value is ∼ 3.

0.999
0.999

0.999

0.999

0.9993
0.9993

0.9993

0.9993

0.9995
0.9995

0.9995

0.9998
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RNP−diagram for F18 with N0 = 1000000

β
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e 
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)
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1400

Figure 1: RNP plotted against β and recording time. The confidence is 95%.

In the above method, the lower level of the recording time and β is set by the
inherent poisson noise. By using a series of recordings in a method that looks at the
mean, rather than just two single points (start and stop), the statistical noise is lowered
and consequently the lower limit of β is reduced to approximately 1.5 (recording time
of ∼ 800 min). In conclusion we cannot find any contaminating isotope with half-lives
shorter than 1.5 times 109.77 min. for RNP(0) = 0.9990 and a confidence of 95%.
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Radio Nuclidic Purity (RNP)

R
ed-necked Phalaropes (another R

N
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18F as an example

Determining the RNP of a 18F batch with 
Determining the RNP of a 

F batch with 
confidence is non-trivial... 
Current accepted method use half-life 
determined from decay over 6+ 6 hours...

y
W

e investigate the boundaries of validity for this 
method and introduce simple methods that both 
method and introduce simple methods that both 
improve accuracy as well as optimize time 
consumption

2

18F as an example

A possible byproduct from silver (Ag) as target is 107Cd
A possible byproduct from silver (Ag) as target is 

Cd
107Cd has a half-life that is 3.6 times longer than 18F
W

ith 1%
 impurity at production

W
ith 1%

 impurity at production
time the pink and purple lines 
illustrate how the impure and 
illustrate how the impure and 
pure samples behaves. 
It l

 th
t b

 thi 
th

d th
Its clear that by this method the
impurity would not be detected 
before well after 800min
before well after 800min.
W

e can improve on that...

3

18F as an example

The time tc where the impurity starts to dominate is given by:
The time tc where the impurity starts to dominate is given by:

tc
=

ln(1=®
)

ln(2)
¯

¯
¡

1 T
1

8F

So for α=0.01 tc =1010min (17h)
for α=0.001 tc =1515min (25h)
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Simple method 1 

W
e compare a pure and an impure decay curve

W
e compare a pure and an impure decay curve.

Both are converted into initial point values (multiplied by 
(½) (-t/T)) 
(½) (t/T)). 
First we identify the time where the separation of the two 

 (
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curves (pure and impure) become statistically significant, 
this is the minimum time our sample needs to decay. 
Significance (95%

) occurs when:
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Simple method 1 
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Simple method 1

If we consider only the poisson noise in the system we 
If we consider only the poisson noise in the system we 
can write up the relation between RNP, t and β. This is 
approximately given by:
approximately given by:

t










1
2

2
3.92
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tT
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





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
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2
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(0)
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



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

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Simple method 1

W
e use this expression to find min t

W
e use this expression to find min t…
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Simple method 1

From hereon it’s a simple YES/NO answer eg
From hereon its a simple YES/NO answer e.g.




(
)

(0)
1.96

(0)
(

)
N

t
N

N
N

t





If the answer is YES –then we have a 95%
 confidence 

that our sample is not contaminated more than the limit set 
that our sample is not contaminated more than the limit set 
by RNP…

9

Simple method 1

Some points to stress:
Some points to stress:

β d
d

 
l t 

ll β (b
t t

 h
)

β dependence only at small β (but strong here)…
Lower detection limit for β (depend on RNP)…

β(
p

)
For lower RNP –impurity is detected earlier, so we find 
every impurity > RNP
every impurity 

 RNP
Time depends on N0 –so this should be as large as 
possible without distorting measurements (dead time 
possible without distorting measurements (dead time 
etc…

)
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Simple method 2

W
e can increase efficiency (lower detectable βand tc at given 

W
e can increase efficiency (lower detectable βand tc at given 

RNP) by taking more data points in a time frame and use the 
mean and the standard deviation of the mean:
mean and the standard deviation of the mean:
This way statistical noise is lowered to:

X
X






where n is the number of data points
X

n

In this method to find tc we generate the time, βcurve by 
computational method. 

11
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Summary
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PC-controlled radiochemistry system for preparation of NCA 
64Cu 

 
Adam Rebeles R., Van den Winkel P., De Vis L., Waegeneer R. 

Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium 
 

 
Due to the rapid increase of the use of nuclear medicine techniques in modern clinical 
diagnosis and in a selected series of therapies, researchers’ efforts are focusing for the 
standardization and optimization of different production routes for a series of emerging 
radioisotopes like 64Cu, 67Cu, 114mIn, 211At.  
In particular the EC/β+/β- decay of 64Cu makes it a promising candidate for both PET 
imaging and internal targeted radio therapy.  In the last decades several groups studied 
different production routes like for this radio nuclide, i.e. 64Ni(p,n), 64Ni(d,2n),64Zn(d,2p).  
Taking into account the wider availability of the medium energy proton beam machines, 
the (p,n) reaction on 64Ni seems to be the most attractive one, although 64Zn(d,2p) may 
be considered as an alternative where lower activity is necessary, as it may require less 
investment in enriched material.  
The production of large activities of 64Cu on regular basis requires a fast and reliable 
chemistry system. Based on the experience gathered in the last decades in our 
laboratory we present here and efficient, remote controlled chemistry system for 
production of the non carrier added 64Cu via 64Ni(p,n) reaction.  
To avoid excessive investment in a gold target carrier, a good practice is to coat the 
copper target carrier with a thin inert material, i.e. 5-6 μm of gold, followed by 
electrodeposition of the 64Ni target layer. In that way, the cross contamination of the non 
carrier added 64Cu with the copper present in the target carrier is excluded. In general 
the irradiations are performed with protons having incident energy of about 15 MeV, and, 
depending on irradiation condition, may lead to curie amount of induced activity of 64Cu. 
To reduce the thickness of the 64Ni target layer, and, as consequence, to minimize the 
problems related with the plating and dissolution of the target layer, a low beam/target 
angle geometry (6 degrees) is desired. Nevertheless, the separation of target / activation 
product is required. Upon irradiation, our chemistry system proposes the dissolution of 
the 64Ni layer in a heated flow trough stripper by means of diluted nitric acid. Next, the 
non carrier added 64Cu is selective extracted into benzene (containing 0.1 M 
benzoylacetone) at pH 4.5, leaving the enriched 64Ni and possible Co induced isotopes 
in the inorganic phase. The back extraction of 64Cu is done in a small volume of diluted 
hydrochloric acid (6 N). The final purification step is achieved using an anion exchange 
column Dowex 1X8. Finally, the NCA 64Cu is eluted with a small volume (10 ml), diluted 
hydrochloric acid (1 N). 
The overall yield of the chemistry is estimated as being higher than 95% with a short 
total chemistry time, less than 2 hours, while the gold plated target carriers can be 
reused as long as the thin gold layer remains intact, meaning that scratches and 
cracking by careless handling are avoided.   
 
 
 

246

kmje
Typewritten Text
Abstract 044



PC
-controlled radiochem

istry 
system

forpreparation
ofN

C
A

64C
u

system
 for preparation of N

C
A

 64C
u

A
dam

 R
ebeles R

., Van den W
inkel P., A

. H
erm

anne, D
e Vis L., W

aegeneer R
.

Cyclotron
Laboratory,Vrije

U
niversiteitBrussel(VU

B),Brussels,Belgium
Cyclotron Laboratory,Vrije U

niversiteit Brussel (VU
B), Brussels, Belgium

Introduction
•

EC
/

+/
-decay of 64C

u 
•

prom
ising candidate for PET im

aging 
•

internal targeted radiotherapy. 

•
D

ifferentproduction
routes

D
ifferent production routes

•
64N

i(p,n) 64C
u

64N
i(d

2n) 64C
•

64N
i(d,2n) 64C

u
•

64Zn(d,2p) 64C
u 

•
C

hem
istry –

separation of N
C

A
 isotope

2

Target preparation
•

IB
A

 C
yclone 30 solid target carrier 
copperpreplated

w
ith

a
thin

A
u

layer(5
m

)
•

copper preplated w
ith a thin A

u layer (5 m
)

Pl
ti

b
th

•
Plating baths:

W
atts

(N
iSO

*6H
O

N
iC

l*6H
O

H
B

O
)

•
W

atts (N
iSO

4 *6H
2 O

,N
iC

l2 *6H
2 O

,H
3 B

O
3 )

•
C

hloride bath (N
iC

l2 *6H
2 O

, H
3 B

O
3 )

(
2

2
3

3 )

•
Sulfam

ate ( N
i(N

H
2 SO

3 )2 , H
3 B

O
3 )

•
A

lkaline bath (N
iSO

4 *6H
2 O

, (N
H

4 )2 SO
4 , N

H
3 , pH

 9-11)

3

Targetpreparation
Target preparation

E
xam

ple of gold preplated target carrier
4



Targetpreparation
Target preparation

E
xam

ple of nickel plated target 
5

Target preparation

G
ood                                                 P

oor
S

urface area granulom
etry(50X

) 
6

O
verview

 of  PC
-controlled radiochem

istry system
 for 

64C
u production

p

7

C
hem

istry –
separation of N

C
A

 64C
u

•
D

issolution
ofthe

64N
ilayerin

diluted
nitric

acid
D

issolution
ofthe

N
ilayerin

diluted
nitric

acid

S
l

ti
t

ti
f

64C
i

t
t

tB
t

lM
th

l
th

•
Selective

extraction
of

64C
u

into
tert-B

utylM
ethylether

(containing
0.1

M
benzoyltrifluoroacetone)atpH

2.7-3

•
Enriched

64N
i

and
possible

C
o

induced
isotopes

rem
ain

in
the

inorganic
phase

(N
H

4 N
O

3 -H
N

O
3 )

the
inorganic

phase
(N

H
4 N

O
3

H
N

O
3 )

•
O

ther
solvents

like
isoam

ylacetate
or

ethylacetate
m

ay
be

used
used

8



C
hem

istry
separation

ofN
C

A
64C

u
C

hem
istry –

separation of N
C

A
 64C

u

1        2        3        4       5        6        7        8        9       10     11      12     pH

1        2        3        4        5        6        7        8        9       10      11      12    pH

Effect of the pH
 on the extraction (J. Starý, E. H

ladký, (1963) A
nalyt. C

him
. A

cta, 28:227)

G
. N

. R
ao,J. S. Thakur, (1974), Z. A

nal. C
hem

., 271:286
9

C
hem

istry –
separation of N

C
A

 64C
u

E
t

ti
it

Flow
 through stripper

Extraction unit
10

C
h

i
t

ti
fN

C
A

64C
C

hem
istry –

separation of N
C

A
 64C

u

•
B

ack
extraction

of
64C

u
is

done
in

a
sm

all
volum

e
of

diluted
hydrochloric

acid
(6

N
)

(
)

•
Finalpurification

step
-anion

exchange
colum

n
D

ow
ex

1X8.
•

The
N

C
A

64C
u

is
eluted

w
ith

a
sm

all
volum

e
diluted

hydrochloric
acid

(0
05

N
)

diluted
hydrochloric

acid
(0.05

N
).

11

C
hem

istry
separation

ofN
C

A
64C

u
C

hem
istry –

separation of N
C

A
 64C

u

C
h

t
hi

l
d

l
i

it
C

hrom
atographic colum

n and volum
e m

easuring unit 
12



C
h

i
t

ti
fN

C
A

C
hem

istry –
separation of N

C
A

 
64C

u
64C

u

13

C
onclusions

•
B

ased
on

the
experience

gathered
in

our
laboratory

in
developm

ents
on

solid

target
chem

istry
system

s
a

robust
m

odular
system

for
the

separation
of

N
C

A
target

chem
istry

system
s,

a
robust

m
odular

system
for

the
separation

of
N

C
A

64C
u

w
as

developed.

•
A

nalytical separation techniques:

–
solvent/solvent extraction

–
ion exchange chrom

atography 

•
H

igh chem
istry yield  >95%

•
Total chem

istry tim
e  <2 hours

•
The

userfriendly
VisualB

asic
interface

-allow
s

the
fullcontrolovereach

step
of

The user friendly Visual B
asic interface 

allow
s the full control over each step of 

the chem
istry w

ith a m
inim

um
 risk of operator errors and of radiation exposure 

for the staff.

14

A
cknow

ledgem
ents

g

•
The authors w

ould like to thank the IB
A

 -Ion B
eam

 A
pplications -

Louvain-la-N
euve

com
pany

forproviding
the

enriched
64N

i
Louvain-la-N

euve  com
pany for providing the enriched 6

N
i 

15

C
onclusions

•
B

ased
on

the
experience

gathered
in

our
laboratory

in
developm

ents
on

solid

target
chem

istry
system

s
a

robust
m

odular
system

for
the

separation
of

N
C

A
target

chem
istry

system
s,

a
robust

m
odular

system
for

the
separation

of
N

C
A

64C
u

w
as

developed.

•
A

nalytical separation techniques:

–
solvent/solvent extraction

–
ion exchange chrom

atography 

•
H

igh chem
istry yield  >95%

•
Total chem

istry tim
e  <2 hours

•
The user friendly Visual B

asic interface -allow
s the full control over each step of 

the chem
istry w

ith a m
inim

um
 risk of operator errors and of radiation exposure 

for the staff.

16



W
TTC

XIII–
Presentation

D
iscussions

W
TTC

 XIII –
Presentation D

iscussions

1.
Fe?
•

E
xtracted

in
ion

exchanger
•

E
xtracted in ion exchanger

2.
R

euse of golden plated back
•

R
eused

10x
w

ithoutbig
activation

•
R

eused 10x, w
ithout big activation

•
C

areful: C
u/A

u dissolve in each other: hotspots=activation
•

W
orst: C

u dissem
ination = low

 specific activity

251



Production of 124I, 64Cu and [11C]CH4 on an 18/9 MeV cyclotron 
 

M.Leporis, M.Reich, P.Rajec, O.Szöllős 
Biont a.s., Karloveska 63, SK-842 29 Bratislava, Slovakia 

 
 
Iodine-124 (T1/2 = 4.18 d) and copper-64 (T1/2 = 12.7 h) are two very important radionuclides 
for radiopharmaceuticals production for preclinical research in a positron emission 
tomography (PET). The method for producing 124I was based on a dry distillation of 124I from 
a solid [124Te]TeO2 target technique. The platinum target disk was used as a base for TeO2 
melt and irradiated on COSTIS target station installed at the end of the external beam line of 
the IBA Cyclone 18/9 cyclotron. The target station was equipped with a 25 µm aluminum or 
250 µm Nb window foil in front of the target, which results in a final beam energy of 17.7 or 
13.5 MeV respective. 

 
 

 
            γ-spectra of the 124I product at EOS 
 

 
 
Peak Nuclide E, keV Intensity, 

% Peak Nuclide E, keV Intensity, 
% 

1 123I  158.97       83.3  14 123I   687.95     0.0267 

2 123I  247.96      0.071 15 124I   722.78    10.35 

3 123I  281.03      0.079 16 123I   735.78     0.062 

4 123I  346.35      0.126 17 123I   783.59     0.059 

5 123I  440.02      0.428 18 124I   968.22     0.435 

6 123I  505.33      0.316 19 124I  1045.0     0.441 

7 124I 
(annih.)  511.0     46.0 20 124I  1325.50     1.561 

8 123I  528.96      1.39 21 124I  1376.0     1.75 

9 123I  538.54      0.382 22 124I  1488.9     0.199 

10 124I  602.72     62.9 23 124I  1509.49     3.13 

11 123I  624.57      0.083 24 124I  1559.8     0.165 

12 124I  645.82      0.988 25 124I  1691.02    10.88 

13 124I  662.4      0.056     

 
γ-lines of the spectra with their energies and 

intensities 
 

 
The 64Ni(p,n)64Cu reaction route was used for 64Cu (T1/2 = 12.7 h)  preparation because its 
entrance channel is accessible at low energies and yield of the reaction is quite high. 
Disadvantage of the reaction used is high price of enriched 64Ni. Gold and platinum targets 
were used for a thick 64Ni target preparation by electro deposition. Because the external 
beam line of the cyclotron has no beam diagnostic devices, several aluminum plates were 
irradiated in the COSTIS target station with a 5 µA proton beam for 5 min with different 
settings for the beam focusing quadrupole magnets. After 15 minutes decay time the plates 
were scanned by a TLC scanner along the horizontal and vertical central axes of the plates 
in order to visualize the beam shape. The settings providing the most homogeneous beam 
spot on the target were selected and used further for the actual target irradiations. The 
radionuclidic purity of the product was determined by γ-spectrometry.  
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Beam profile measured on Al disk; Nb window 0.30 mm 
 
Carbon-11 (T1/2 = 20.39 min) was prepared in the form of methane in aluminum target made 
by IBA. Total irradiated volume of the gas mixture (90% N2 +10%H2) was 50 cm3. Reaction 
used at irradiation was 14N(p,α)11C. Aluminum and niobium windows were used during  
irradiation. The irradiations were performed first without and then with niobium foil inside the 
target with purpose to eliminate the surface influence of aluminum. During the optimization of 
irradiation, different pressures of gas were tested as well as the beam currents. Produced 
methane was sorbed on Carboxen 1000 column at the temperature of -150 °C on TracerLab 
FXC module made by GE Medical Systems. 
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A simple and flexible device for LabView applications  

A. Hohn, E. Schaub, S. Ebers, R. Schibli 

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland 

LabView is the state of the art programming tool for measurement and control applications and the 
market offers a wide range of sophisticated data acquisition tools (DAQ). However, for radionuclide 
separation purposes a high sample rate and a high accuracy is often not necessary. Therefore, we 
were looking for a low-cost DAQ with a USB interface for maximum flexibility and sufficient I/O 
lines. Finally, we decided to use the USB-6008 by National Instruments. This small size, low-cost 
DAQ has 8 analog inputs, 2 analog outputs and 12 digital I/O lines. Mounted on a print together 
with a transistor for each digital line (Fig. 1) this DAQ is the base of our device. 
 

 
Fig. 1   USB DAQ mounted on a print 
 
For the portable version of our device (Fig.2) the USB DAQ module is mounted in a desktop rack 
together with a power supply module (24 V, 120 W) and a relay module containing 12 relays. 
Additional slots are available for other modules. Each single module can be replaces easily in case 
of a failure.  If more slots are needed all modules can be mounted as well in a 19’’ rack 
 

 
Fig. 2   Portable device for LabView applications with a mounted PC 
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Several additionally modules like a temperature module and a pulse-width-modulator 
(PWM) are available. An amplifier for pH measurements and for activity measurements 
with photodiode radiation detectors (Fig.3) was developed. This amplifier with a variable 
gain is a modified version of the amplifier described by Zeisler et al. Another module is a 
mini PC including a hard drive. In combination with a touch screen the device can be used 
without an external PC or notebook.  
 
 

 
 
Fig. 3   Amplifier with photodiode radiation detector 
 
 
 
The described devices are used in our group for the routine production of radionuclides 
(89Zr and 64Cu) for several years without any problems. 
 
 
 
 
Literature: 
 
Zeisler, S. K., Ruth, T. J., Rektor, M. P. (1994). "A Photodiode Radiation Detektor for PET 
Chemistry Modules." Appl. Radiat. and Isotopes 45(3): 377-378. 
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Three years experience in operation and maintenance of the  
[18F]F2 proton target at the Rossendorf Cyclone® 18/9 cyclotron 
 
St. Preusche, F. Fuechtner, J. Steinbach 
Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, P.O. Box 51 01 19, 
01314 Dresden, Germany 
 
Introduction 
An increasing demand of radiopharmaceuticals based on electrophilic reaction with [18F]F2 
gas (for instance [18F]FDOPA) led to an upgrade of the IBA [18F]F2 gas target system in 
summer 2007. The more than 10 years operated [18F]F2 deuteron target [20Ne(p,α)18F] was 
not able to meet the increasing requirements in terms of activity anymore and was thus 
replaced by an IBA [18F]F2 proton gas target [18O(p,n)18F] based on the so-called “double-
shot” ‘irradiation method by R.J. Nickles [1]. The upgrade itself was done by IBA. 
We run the Cyclone® 18/9 cyclotron in routine operation for more than 14 years. One of the 
specific features of the Rossendorf PET Center is the Radionuclide transport system (RATS) 
[2], 500 m in length that bridges the distance from the cyclotron to the radiopharmaceutical 
laboratories. The activity at the end of bombardment (EOB) is calculated taking in account 
the transfer time and experimental data of activity losses (about 30%) in the transfer tube [2]. 
 
The target and its supply 
The [18F]F2 proton gas target is connected directly to the vacuum chamber of the cyclotron 
inside the return yoke. Target body: aluminium; target volume: 35 cm3 of conical shape; 
target window: aluminium, thickness 500 µm; vacuum window: titanium, thickness 12.5 µm.  
As target gases are used for the first bombardment: 18O (enrichment: > 97%; cartridge 
volume: 75 ml, gas volume: 5250 ml, pressure: 70 bar, manufacturer: Cambridge Isotopes 
Laboratories, Inc./USA, distributor: ABX/Germany) and for the second bombardment:  
(Ne/2% F2), filled up with pure Ne (both: Air Liquide/Germany) to achieve (N2/0.45% F2). 
 
Experience in operation and maintenance of the target 
First bombardment:    18O2: 20 - 22 bar, 40 or 60 or 80 minutes at 22 µA target current 
Second bombardment:         Ne/F2: 20 - 22 bar, 15 minutes in each case at 22 µA 
 
Hints for operation: 
- Keep the target cavity in standby always under (Ne/F2) atmosphere 
- Prior to the first bombardment of the [18F]F2 production a pre-irradiation (5 minutes, 10 

µA) with (Ne/F2) and transfer of the irradiated gas to the radiopharmaceutical laboratory 
for the conditioning of the target cavity and the transfer tube is useful. 

- After deposition of the irradiated 18O gas into the liquid nitrogen cooled trap: A careful 
pump down of the target cavity for some minutes is mandatory before filling it for the 
second bombardment to prevent the formation of [18F]F – O species. 

- One 18O cartridge is sufficient for (100 – 120) irradiations. An average gas loss of less 
than 5% per bombardment has to be compensated by filling from the 18O cartridge. It is 
possible to use the 18O gas (from the cooling trap and the cartridge) until the residual 
pressure of the 18O cartridge is around 10 bars. 
 

A slight but permanent drop in the target yield is an indication for a target cleaning procedure 
to be necessary (see Fig. 1).  
After target opening it is observed that the surface of the target cavity did not have a metallic 
sheen anymore. We added a grinding procedure of the cavity with very fine sand paper to 
the IBA cleaning procedure [3]. After the cleaning the surface of the cavity should look as 
metallic. We found this procedure necessary to be done after 100 to 120 runs and perform it 
once a year. 
The handling of the target system is not easy because the results of any kind of changes are 
often not well reproducible. The highly-reactive [18F]F2 gas at the µmol level is difficult to 
handle due to the large surfaces of the target cavity, the transfer tube and the synthesis 
module. 
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Fig. 1: [18F]F2

BOS and [18F]FDOPA activity yields in 2007 – 2009, 
 TC: target cleaning, line: [18F]FDOPA yield 
 
Results 
- Dependence of produced [18F]F2

BOS activity on the irradiation time of first bombardment: 
40 minutes - 16 ± 2 GBq, 60 minutes - 20 ± 3 GBq, 80 minutes - 20 ± 5 GBq � no increase 
of [18F]F2

BOS activity increasing the irradiation time of first bombardment from 60 to 80 
minutes, 

- Besides the produced absolute [18F]F2 activity, the reactivity of the F2 gas is important for 
the [18F]FDOPA activity yields. 

- Target cleaning is recommended if:  
o The absolute [18F]F2

BOS activity yield drops down to about 15 GBq or 
o The [18F]FDOPA yield is near or below 15 %. 

The advantages of the new [18F]F2 proton target are: 
- Higher efficiency in terms of [18F]F2 activity and resulting [18F]FDOPA activity yields, 
- Operating conditions far from limitations of the target current; that results in less wear of the 

cyclotron. 
 
A comparison of the [18F]F2 deuteron and proton targets is given in the table. 

 Deuteron target Proton target 
Max. target current 18 µA 30 µA 
Irradiating conditions         time 
 

average /common current 

120 min 
 

18 µA 

First bombardment:      60 min 
Second bombardment: 15 min 

22 µA 

AEOB, GBq 7 - 11 34 ± 5 
 
References 
[1] R.J. Nickles, M.E. Daube, T.J. Ruth; An 18O2 target for the production of [18F]F2 

Int. J. Appl. Radiat. Isot. 35 (1984) 117-122 
[2] St. Preusche, F. Füchtner, J. Steinbach, J. Zessin, H. Krug, W. Neumann; Long-
 distance transport of radionuclides between PET cyclotron and PET radiochemistry, 
 The Journal Applied Radiation & Isotopes 51 (1999) 625-630 
[3] IBA, [18F]F2 proton target, maintenance procedure, 2007 
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6.1 Target cleaning procedure

1.
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ount the target com

pletely (rear plate too)

2.
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rinding the target cavity w
ith very fine sand paper 

3.
IB

A cleaning procedure (solvents, w
ater, dry) [3]
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
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adiation protection in the w
orking area

Lead brick (5 cm
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reduces dose rate in front of the gap

E
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B
 + 2 hrs

w
ithout leak brick  > 28.000 µS

v/h
w

ith lead brick            6.400 µS
v/h

E
O

B
+

24
hrs

E
O

B + 24 hrs
w

ithout leak brick          330 µS
v/h    

w
ith lead brick                 75 µS

v/h

B
) Parker valves of valve tableau
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problem
s w

ith inserts (= poppets):  

drop in target pressure: valves not leak-proof 
anym

ore

G
rove by 

valve seat 
(photo:P
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anym

ore


keep poppets as spare parts              


change poppet during H

e-flush through target   

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arker)
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Non-HPLC Methods for the Production of F-18, C-11 and Ga-68 PET 
Tracers 
 
Alexander Yordanov1, Damion Stimson,2 Didier Le Bars,5 Seth Shulman1, Matthew J. 
Combs1, Ayfer Soylu,4 Hakan Bagci,4 and Marco Mueller3 

 
1 Bioscan, Inc., Washington, DC, U.S.A.  
2 Royal Brisbane Hospital, Brisbane, Queensland, Australia 
3 ABX, Radeburg, Germany 
4 Ezcacibasi-Monrol, Ankara, Turkey 
5 CERMEP, Lyon, France 
 
 
The most popular PET radionuclides in routine clinical use are C-11 and F-18, although other 
radionuclides, such as Ga-68, continue to make headlines. This is due to their well established 
chemistry, their utility for labeling low molecular weight compounds, and their ease of production 
in modern PET cyclotrons or via commercially available generators. Their relatively short half-
lives, along with the global trend toward Good Manufacturing Practice in PET drug production 
has necessitated the development of aseptic, robust and rapid labeling methodologies. This is 
achieved by the use of automated radiochemistry systems, which, in turn, has allowed 
radiosynthesis scale-up and multiple dose preparation.  
 
Major impediments to routine production of a number of useful C-11, F-18 and Ga-68 PET 
tracers, and to new tracer development, remain: 1) the necessity of thorough system clean up in 
between consecutive runs; and 2) inconsistent yields and prolonged synthesis time when using 
HPLC methods for final product separation and purification. To address these issues, new 
radiochemistry applications have been developed for the radiochemistry modules:  
 
 a) for F-18: FLT Lite, F-MISO Lite, F-Choline Lite, and FET Lite;  
 b) for C-11: Acetate, Methyl Iodide, Methionine, Choline; 
 c) for Ga-68: DOTA-Peptides. 
 
These methods utilize sterile disposable kits, and allow for the PET tracers to be purified and 
isolated with SPE cartridges only, thus eliminating the need for HPLC separation. The 
processes and the radiochemical yields obtained with these methods will be presented, and 
their utility discussed. 
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     FET Scheme 

                          
 
 
 
          C-11 Acetate     C-11 Methyl Iodide 
 
 

         
 
 
 
                     C-11 Choline     C-11 Methionine 
 

                  

269



N
on

H
PLC

M
ethods

forthe
N

on-H
PLC

 M
ethods for the 

Production of F-18, C
-11, G

a-68, C
u-

64 and Sc-44 R
adiopharm

aceuticals 

•
A

. Yordanov, M
. C

om
bs, S

. S
hulm

an                      
B

ioscan, Inc., W
ashington D

C
, U

.S
.A

.
g

•
D

. S
tim

son, R
oyal B

risbane H
ospital, B

risbane, 
Q

ueensland
A

ustralia
Q

ueensland, A
ustralia

•
M

. M
üller-A

B
X

 G
m

bH
, R

adeberg, G
erm

any

•
H

. B
ağci, A

. S
oylu

-E
czacibasi-M

onrol, A
nkara, 

Turkey

•
D

. LeB
ars, C

E
R

M
E

P, Lyon, France

D
isclaim

er

This presentation is solely intended to 
provide and dissem

inate the authors’ 
scientific results, interpretation and view

s 
,

p
in the nuclear m

edicine com
m

unity. It 
does

notconstitute
an

endorsem
entof

does not constitute an endorsem
ent of 

any B
ioscan or other com

m
ercial 

m
anufacturers’products

listed
displayed

m
anufacturers

 products listed, displayed 
on m

entioned hereof.

2

2010 –
G

ood Y
ear for the P

E
T 

R
adiopharm

aceutical Industry

•
W

ILE
X

 -IB
A M

olecular P
hase III C

linical 
T

i
l

fR
E

D
E

C
TA

N
E

(R
)

f
ll

Trial of R
E

D
E

C
TA

N
E

(R
) w

as successfully 
com

pleted; N
D

A filing expected by the 
beginning of year

•
Lantheus

P
hase

IIIclinicaltrialto
begin

•
Lantheus P

hase III clinical trial to begin

•
AV

ID
 P

hase III clinical trial near 
ase

c
ca

t
a

ea
com

pletion

•
B

ayer S
chering P

harm
a A

G
 P

hase III

3

2010 –
G

ood Y
ear for P

E
T R

adiopharm
aceutical 

p
Industry (cont.)

•
IB

A
M

olecular
A

posense
P

hase
III

•
IB

A M
olecular –

A
posense P

hase III 
C

linical Trial

•
Fluoropharm

a

•
N

uView
 P

harm
aceuticals

•
Lantheus

AV
ID

–
nextleads

in
the

•
Lantheus, AV

ID
 –

next leads in the 
pipeline

•
M

ore P
E

T Tracer S
tart-ups 

4



Is There Future for N
ew

 R
adionuclides

in Im
aging 

g
g

and Therapy?

•
Yes if (am

ong other factors) the radionuclide:

*
has a convenient half-life

*
is

available
in

com
m

ercialquantities
*

is available in com
m

ercial quantities 
and at reasonable cost

*
has optim

al radio-labeling chem
istry

*
has established an optim

al target –
targeting vector –

radionuclide m
atch

g
g

5

Is There Future for N
ew

 R
adionuclides

in Im
aging 

g
g

and Therapy (cont.)?

•
Yes if (am

ong other factors) the im
aging or 

therapeutic
drug

candidate:
therapeutic drug candidate:

*
is m

anufactured by a process easy to 
s

a
u

actu
ed

by
a

p
ocess

easy
to

scale up

*
has dem

onstrated sufficient in vitro and in 
vivo stability y

*
provides high quality im

age or superior 
th

ti
ff

t
therapeutic effect

*
clinicalindication

w
ith

few
alternatives

clinical indication w
ith few

 alternatives
6

Is There Future for N
ew

 R
adionuclides

in Im
aging 

g
g

and Therapy (cont.)?

•
A

nd last but not least :

*
enterpreneurship

(the right person 
doing the right thing at the right tim

e)
do

g
t

e
g

tt
g

att
e

g
tt

e)

*
availability of funding for clinical trials

*
it is a trial-and-error process (out of every 
12

radiolabeled
m

olecules
only

one
w

ill
12 radiolabeled m

olecules only one w
ill 

becom
e a drug on the m

arket)

7

R
adionuclides

S
tatus from

 Industry P
oint of 

y
View

•
E

xisting or under construction m
anufacturing 

netw
ork

C
11

N
13

O
15

F
18

I124
C

u
netw

ork –
C

-11, N
-13, O

-15, F-18, I-124, C
u-

64, Zr-89, Tc-99m
, I-123, I-131, Y-90

•
M

anufacturing issues that are expected to be 
solved

during
the

nextfew
years

-forG
a-68

solved during the next few
 years -for G

a-68, 
R

e-188, Y-86, A
t-211, C

u-67, H
o-166, Lu-177, 

B
i213

B
i-213

•
O

therradionuclides
notm

entioned
here

–
m

ay
O

ther radionuclides
not m

entioned here 
m

ay 
be available in large quantities in 10 years or 
m

ore
m

ore 
8



S
tandard P

urification Tools for 
P

harm
aceuticals

•
C

rystallization
•

C
rystallization

•
S

ublim
ation

•
Filtration

•
D

istillation

Li
id

li
id

lid
h

t
ti

•
Liquid-liquid or solid phase extraction

•
Preparative

H
PLC

purification
???

Preparative H
PLC

 purification ??? 

9

P
ros and C

ons of H
P

LC
 separation

p

PPros:
•

P
rovides

universalseparation
m

ethod
in

P
rovides universal separation m

ethod in 
com

plex m
ixtures 

C
ons:

•
Lengthens

radiosynthesis
tim

e
•

Lengthens radiosynthesis tim
e

•
C

olum
n packing m

aterial is variable
p

g

•
R

adiolytic dam
age to colum

n packing w
ith 

hi
h

ti
it

high activity 

10

G
a-68, C

u-64 and Sc-44 Peptide 
R

adiolabeling
R

adiolabeling

11

G
a-68

D
O

TA
-

G
a

68 D
O

TA
TATE

•Elute G
enerator into top of 

box
• C

apture
eluentin

reactorthat
C

apture eluent in reactor that 
contains precursor
•H

eat M
ixture

•Trap on SPE
p

•Elute w
ith Ethanol into 

m
ixing vial

•R
inse w

ith A
cetate B

uffe r
•C

ollect product

12



13

B
u

4 N
+,  

PS-H
:

4,4’-dim
ethoxytrityl alcohol

-
W

A
X:

N
osylate anion

H
LB

:
Latereluted

w
ith

10%
aq.EtO

H
H

LB
:

Later eluted w
ith 10%

 aq. EtO
H

18F

FLT

14

FLT-Lite
H

otR
uns

FLT
Lite

H
ot R

uns

D
ate

B
eam

D
uration of 

B
om

bardm
ent 

(M
inutes)

A
ctivity 

(m
C

i)

FLT 
A

ctivity 
(m

C
i)

C
orrected 
Y

ield
Precursor

(M
inutes)

(m
C

i)

10.02.2009
Single

18
557

61
15,2

25 m
g

14.02.2009
Single

198
1256

106
11,7

25 m
g

18.02.2009
Single

168
3155

493
21,4

25 m
g

13
04

2009
Si

l
50

852
153

24
8

20
13.04.2009

Single
50

852
153

24,8
20 m

g

15.04.2009
D

ual
88 –

91
3587

493
19,1

25 m
g

16
04

2009
D

ual
128

–
77

4290
531

17
9

20
m

g
16.04.2009

D
ual

128 –
77

4290
531

17,9
20 m

g

17.04.2009
Single

90
2509

235
12,9

20 m
g*

*The precursor w
as dissolved the previous day and kept in a fridge overnight

15
16



17

C
-11 A

cetate

18

C
-11 C

holine

19

C
-11 M

ethionine

20



C
-11 M

ethyl Iodide (M
eI)

21

C
-11 M

ethyl Iodide (M
eI)

Average Yield: 50 %
 EO

S

22

C
learly, there is a lot of w

ork to be done.
y,M

ore challenges ahead:

•
Target processing autom

ation

•
A

lternative suppliers for enriched target 
m

aterials
m

aterials

•
A

ntibody and antibody fragm
ents radio-

y
y

g
labeling

autom
ation

W
h

t
b

tth
f

t
ft

t
d

•
W

hat about the future of targeted 
radiotherapy?

*
A

t-211 chem
istry autom

ation

23

W
TTC

XIII–
Presentation

D
iscussions

W
TTC

 XIII –
Presentation D

iscussions

1.
FLT: system

 by-products
•

P
eak

alw
ays

there
m

aybe
justcold

FLT
•

P
eak alw

ays there, m
aybe just cold FLT 

2.
S

ep-pak
vs. H

P
LC

•
S

ep
pak

notG
M

P
regulators

can
see

a
problem

•
S

ep-pak
not G

M
P…

 regulators can see a problem
•

Sep-pak
easier than H

P
LC

3
C

hallenge:collaboration
target/chem

istry/m
anufacturers

3.
C

hallenge: collaboration target/chem
istry/m

anufacturers



Evaluation on metallic Sc as target for the production of 44Ti on high 
energy protons 
 
K. Zhernosekov 1,2, A. Hohn 1, M. Ayranov 2,  D. Schumann 2, R. Schibli 1, A. Türler 1,2 

1 Center for Radiopharmaceutical Science, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland  

2 Labor für Radio- und Umweltchemie Departement Chemie und Biochemie Universität Bern 
Switzerland 

Radionuclide generators provide an alternative and often more convenient source of radionuclides 
compared to the direct production routes at accelerators and nuclear reactors. Especially generator 
produced positron emitters are of increased interest for development of novel PET-
radiopharmaceuticals [1]. Thus 68Ge/68Ga radionuclide generator is successfully introduced into the 
clinical PET for routine production of 68Ga-PET tracers. Due to rather short half-life (T½  68 min) 
68Ga is useful, however, only for the investigations on fast in vivo processes.  

With 3.97 h half-life and 94.27 % positron branching 44Sc is a very attractive alternative for 
applications in clinical PET. The major advantage is the production possibility of this radionuclide 
via 44Ti/44Sc radionuclide generator (44Ti T½ = 60.0 y). The limited availability of the long-lived 
mother nuclide 44Ti complicates further development in the radionuclide generator technique and 
44Sc-radiolabelled compounds. 

44Ti can be produced by the 45Sc(p,2n) nuclear reaction. The long half-life of the accumulating 
nuclide and a low cross section (Fig. 1) result in a very low production rates and long-term high-
current irradiations must be performed. The irradiation facility at Paul Scherrer Institute provides up 
to 72 MeV and 70 µA proton beam. For the production of 44Ti we are evaluating massive metallic 
45Sc targets for the long-term irradiation with protons up to 40 MeV. Up to 10 mm thick scandium 
blocks are encapsulated in an electron-beam welded thin Al-foil. For the possible routine 
production the water-cooled target system is supposed to withstand up to 7000 µAh resulting in 50 
– 100 MBq of 44Ti. In this respect, the preliminary results on the irradiation yields and optimizations 
as well as stability of the system are presented.  

 

[1] Rösch, F., Knapp, F. F. Radionuclide Generators. In: Vértes, A., Nagy, S., Klencsár, Z. 
Handbook of Nuclear Chemistry. Amsterdam, 2003; 4: 81 – 118; 

[2] Experimental Nuclear Reaction Data (EXFOR) http://www-nds.iaea.org/exfor/exfor.htm 
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Figure 1. Excitation function of 45Sc(p,2n)44Ti reaction [2]  
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Operating RbCl Targets Beyond the Boiling Point? – Work in progress 

F.M. Nortier1, H.T. Bach1, M. Connors1, K.D. John1, J.W. Lenz2, F.O. Valdez1, J.W. Weidner1 

1Los Alamos National Laboratory, Los Alamos, New Mexico, USA 
2John W. Lenz & Associates, Waxahachie, Texas, USA 

The 100 MeV Isotope Production Facility (IPF) at Los Alamos National Laboratory produces the 
medical isotope Sr-82 on a large-scale.  For routine production runs, RbCl salt targets are 
encapsulated in electron beam welded Inconel® 625 capsules and irradiated in a typical target 
stack consisting of two RbCl targets for Sr-82 production and one gallium target for Ge-68 
production [1] (see Fig.1). These two-inch diameter targets 
are cooled on their faces with water flowing through 5 mm 
wide cooling channels that separate the targets. 
Systematic target performance studies of similar 
encapsulated targets under extended bombardment with 
intense proton beams are not available in the literature.   
Routine production experience at LANL shows that while 
the unexpected failure of a gallium target after an 
extended irradiation is often associated with radiation 
damage and other cumulative effects in the niobium 
capsule material [2], the abrupt early failure of a RbCl 
target is usually associated with the thermal effects 
occurring in the encapsulated target material.  Numerous 
Sr-82 production runs were performed at IPF over a period 
of six years. Almost one hundred RbCl targets were 
irradiated with production beam currents of up to the facility 
administrative limit of 250 µA. Target performance statistics 
indicate that these targets can reliably accept production 
beam currents of between 230 µA and 240 µA.  At higher 
beam currents, occasional early target failures are likely to 
occur.  Excessive bulging of the two adjacent RbCl target 
capsules interrupts the water flow in the cooling channel 
between the targets and leads to sudden loss of cooling, 
causing the two target capsules to fuse together (see Fig. 
2). 

In a recent development, the administrative limit of the IPF 
facility was increased from 250 µA to 450 µA, increasing the 
production capacity of the facility by almost a factor of two.  
In December of 2009 a preliminary high current test was 
conducted using a test stack consisting of three aluminium 
targets.  During this test, the IPF demonstrated that the facility can safely operate at 360 µA.   A 
follow-up high current test is now planned for the 2010 run cycle in order to demonstrate facility 
operation at the authorized current limit of 450 µA.  Since most of the facility beam time is 
consumed by the large scale production of Sr-82, this new development sparked the desire to 

Fig. 1.  Typical target stack for 
production of  Sr-82 and Ge-68 

 

Fig. 2.  Failed RbCl targets 
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better understand the RbCl target failure mechanisms in order to push the in-beam performance of 
the targets beyond their present beam current limit. 

The existing failure theory assumes that the observed target bulging results from internal pressure 
driven by localized boiling of the RbCl salt, which has a boiling point of 1390 °C.  In one controlled 

experimental irradiation, a set of RbCl targets were driven 
to the point of failure by systematically increasing the 
beam current.  The targets were inspected before each 
beam current increase.  During this experiment, a thermal 
performance limit for the RbCl targets was established at 
275 µA.   It should be noted that occasional thermal failure 
under production conditions could occur at beam currents 
as low as 245 µA.   In a separate, more theoretical effort, 
a detailed thermal analysis (see Fig. 3) predicted localized 
RbCl boiling at a beam current of 250 µA, suggesting that 
the thermal performance limit should be at 250 µA.  The 
analysis took into account the major coupled thermal 
processes outside and inside the target, such as the water 
cooling of the target faces by means of forced convection, 
heat conduction through the solid and molten materials, 
and natural convection in the molten part of the salt.  
These results, together with data gained from the few 
target failures experienced during production runs, tend to 
support the theory that failure occurs when the maximum 
temperature reaches the boiling point of RbCl. 

However, some evidence also suggests that the maximum temperature must be much higher than 
the boiling point at the time of failure.  For example, it is known that bulging is observed in most of 
the production targets but that abrupt target failure occurs only when the cooling channel is 
sufficiently disturbed.   This suggests that failure occurs when the bulging windows of the two 
adjacent RbCl targets touch, meaning the deflection of a single window reaches 2.5 mm.  Based 
upon hydraulic deflection tests of capsule windows, a deflection of 2.5 mm corresponds to an 
internal capsule pressure in excess of 30 bar.   Assuming that the internal pressure is caused by 
RbCl vapour, the high pressure value suggests a maximum internal target temperature in excess 
of 2100 °C, which does not correlate with the thermal analysis results. 

Considering the growing demand for Sr-82 and the recent increase in the IPF administrative beam 
current limit, there is renewed interest in increasing the existing beam current limit imposed on our 
RbCl targets.   Efforts to gain a still better understanding of the failure mechanisms occurring in 
these high-power targets through improved analysis and capsule design changes are in progress. 

[1] F. M. Nortier, J. W. Lenz, C. Moddrell and P. A. Smith, “Large-scale Isotope Production with an Intense 100 MeV 
Proton Beam: Recent Target Performance Experience”, Proceeding 18th International Conference on Cyclotrons 
and their Applications, edited by D. Rifuggiato and L.A.C Piazza, Presso la C.D.B. di Ragusa (2008) 257.  

[2] H.T. Bach, T.N. Claytor, J.F. Hunter, B.E. Dozier, F.M. Nortier, D.M. Smith, J.W. Lenz, C. Moddrell, and P.A. 
Smith,  Ultrasonic and Radiographic Imaging of Niobium Target Capsules for Radioisotope Production. Proc. 35th 
Annual Review of Progress in Quantitative Nondestructive Evaluation; AIP Conference Proceedings 1096 (2009) 
674. 

 

Fig. 3.  Predicted temperature 
distribution in a RbCl target 
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[18O]Water Target Design for Production of [18F]Fluoride
at High Irradiation Currents

Alex D. Givskov1,2, Mikael Jensen1

1Radiation Research Division, Risø National Laboratory for Sustainable Energy, DK-4000 Roskilde,
Denmark
Email: 2algi@risoe.dtu.dk

Abstract

The current standard for [18F]fluoride production is proton irradiation on a [18O]water target. Heat
removal is the main obstacle to achieve a higher production. The 16.5MeV proton cyclotron at Risø
has a maximum [18F]fluoride production rate at an irradiation current of 55 µA. The aim of this
target design is to irradiate at a proton current not below 100 µA while maintaining a [18O]water
volume close to 5mL and a yield better than 80% compared with theoretical. The theoretical yield
is calculated by cross section data [1] and using SRIM [2] H2O stopping power calculation. At 55 µA

the production yields 84% ± 4% of theoretical yield. This corresponds to an average of 140 GBq

[18F]fluoride for 1 hour of irradiation. A higher intensity beam will further reduce the efficiency of
the [18F]fluoride production. Still much remains in understanding the physics inside the currently
used water target. However it is claimed that current water targets operating at maximum yield
contain saturated steam vapor phase region(s) which are not constant in volume over time [3]. We
propose a new target design which is a deep narrow cylindrical/cone shaped silveri target, see figure
1. The target has a depth of over 80 mm and width of about 10 mm near the target front. The
width decreases as the target deepens. Its chosen shape is based on our model, which simulate the
extent of the claimed steam/water matrix. This target is designed to operate at 30 bar of helium
pressure and it is cooled by water at the sides and back and not by helium at the front. Introducting
fins inside the target cavity will increase the [18O]water-target wall surface and the heat transfer
over this boundary is assumed to be the limiting factor in transfering heat from the [18O]target
water. Possible nucleate boiling heat transfer by conduction via convection may increase the heat
conduction of up by a factor 102.

References

[1] E. Hess, S. Takacs, B. Scholten, F. Tarkanyi, H. H. Coenen, and S. M. Qiam. Excitation Function
of the [O-18](p,n)[F-18] Nuclear Reaction from Threshold up to 30 MeV. Radiochim. Acta 89,

357, 2001.

[2] SRIM The Stopping and Range of Ions in Matter. Homepage: http://www.srim.org. World
Wide Web.

[3] J. Michael Doster. New Cyclotron Targetry to Enhance F-18 Clinical Positron Emission To-
mography. Homepage: http://www.osti.gov/bridge/servlets/purl/945375-HKLadR/945375.pdf.
World Wide Web.

iSilver is chosen as target chamber material during this stage og modelling and prototype development, because

of the good mechanical and thermal characteristics, its reasonable low price and universal availability. Once cavity

design is optimized other target chamber materials will be used, i.e. noble metal plated silver.
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Figure 1: The target cavity of the [18O]water target design is illustrated in the figure. The typical
dimension of the target is 80 mm deep and 10 mm wide. A schematic extent of an assumed
steam/water matrix (Steam/Water) is also shown. In the rest of the cavity is water.
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Direct production of Ga-68 from proton bombardment of concentrated aqueous solutions of 

[Zn-68] Zinc Chloride. 
    
Mikael Jensen, The Hevesy Laboratory, Risoe-Technical University of Denmark 
kmje@risoe.dtu.dk 
John Clark,  University  of Edinburgh, College of Medicine and Veterinary Medicine, UK  
jcc240@gmail.com 
 
Expecting a drastic increase in use of Ga-68 in the coming years, we have reconsidered the 
possibilities for direct production by small cyclotrons. Although the Ge-68 generator is widely 
available and easily used, it often does suffer problems from limited lifetime (shorter than the 
physical T½ of Ge-68 ) , high price and limited activity output. It is also our concern that a global 
creep from Tc-99m examinations towards Ga-68 PET-CT counterparts could rapidly exhaust the 
present global supply of Ge-68. 
 
The direct production by electroplated, solid, highly enriched Zn-68(p,n)Ga-68 is well known and 
closely mimics the production of the blockbuster isotope Ga-67. Same target, same chemistry, just a 
little more energy to give the (p,2n) reaction. However the prospect of doing an enriched 
electroplated solid target, bombardment, etching, ion exchange separation and target material 
recovery chemistry for a single patient dose of Ga-68 does not seem feasible for routine use. 
 
For this reason we have tested a “solution target”, where we bombard ZnCl2 in high concentration 
in water. Of course, the water does “eat up” some useful cross section and gives more stopping, but 
for a high yield “easy” (p,n) reaction and with a short lifetime product, this is certainly possible.  
From the outset, we only had four concerns: 

1. Can highly concentrated zinc chloride solutions be contained in a metal target and behind 
a target foil during bombardment? It is, after all, strongly acidic, and popularly used as 
strong soldering flux, dissolving many metal oxides. 

2. Can the yield be predicted and is it high enough for routine application? 
3. Will zinc remain as zinc chloride during the rather unusual conditions during proton 

bombardment? And will Ga-68 come out in solution from the target? 
4. Can the Ga-68 be extracted rapidly from the target solution and will it be possible to 

reuse the enriched zinc chloride solutions directly? 
 
We have addressed all four problems experimentally, and will report the very satisfying outcome. 
As target we used a slightly modified Niobium target body (designed for F-18 production), kindly 
provided with very few questions  by Tomas Eriksson of GE Medical Systems in Uppsala. As target 
foil we chose 100 micrometer thick Niobium foil, partly to degrade 16.5 MeV proton beam of our 
PETtrace    down to more optimal (p,n) energies, partly because we wanted to lower the risk of 
getting foil breaks and loss of the brine solution into a routinely used cyclotron.  
 
We have kept a piece of this Nb foil in a concentrated ZnCl2 solution for 6 months without any 
signs of attack, loss of luster or change of weight. The target has survived many bombardments at 5, 
10 uA and a single 20 uA run. We have not yet pressurised the target beyond atmospheric, and we 
thus did get boiling through the target filling line at 20 uA. But pressurisation should allow higher 
currents. After bombardments, the target body chamber and the foil look completely untouched. 
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Clear ZnCl2 solutions at room temperature can be prepared with more than 3 grams of ZnCl2 to 1 
gram of water. We did the early target testing with 2 grams of ZnCl2 to 1 gram of water. When 
testing with enriched Zn-68, we used 1 gram ZnCl2 to 1 gram water. 
 
The cross section for Zn-68(p,n)Ga-68 is well known (F.Szelecsneyi et al. JARI, 49,1005 (1998). 
Using this and a straight forward stopping power calculation made by SRIM (version 2008.04, 
J.F.Ziegler et al 2008 WWW.SRIM.ORG) we predicted a saturation yield for 1µA of 1500 MBq for 
a one-to-one ZnCl2 solution. This again corresponds to 1500 MBq at EOB after 20 minutes 
bombardment at 5 µA. 
 
Experimentally we found values at little higher than this (1800 MBq Ga-68 @ EOS), measured by 
both dose calibrator after 1 hour and by gamma spectroscopy and thus corrected for influence of 
other positron emitters. With pressurisation of target, higher current on target and a higher Zn 
concentration, yields above 10 Gbq EOS should be obtainable. 
 
We have used a batch of Zn-68 from Campro with 99% enrichement for our target solution. The 
only observed radionuclic impurity (after chemical separation of the Gallium, see below) was Ga-67 
(probably from the (p,2n) process), and this accounted for less than 0.1% of total activity EOB. 
 
To extract the Ga-68 from the target solution (still having a pH around 2 after bombardment) we 
passed it through a preconditioned Waters C-18 sep-pak. From old literature, it is known that 
Gallium chloride complexes behave “lipophilic”, - but the success of this was still a pleasant 
surprise to us. Zinc chloride passes through while more than 90% of Ga-68 sticks on the seppak. 
The seppak was washed by 2 fractions of 10 ml water to remove effectively the remaining Zinc. 
The primary eluate and the water washings were collected and concentrated by simple boiling up 
the original ZnCl2 concentration. Another successful production with same yield was done on this 
solution. The Ga-68 could be eluted from the seppak in a small volume of 0.1 Molar HCl. Thus, 
both activity extraction and target material recovery can be done rapidly and simple. 
 
Ga-68 activity will be of limited use, if it cannot be reclaimed in more or less metal free form. The 
large initial load of Zinc on the column is however effectively washed out by the water fractions. 
Using Zn-63 and Zn-65 as indicators, the Zinc “decontamination” factor of this process is better 
than 5000. Other metals, like for example Iron impurities in target solution, can be more difficult to 
separate out by this method and should thus be avoided. 
 
We believe that this method with some more development can be of value for local production of 
large activities of Ga-68 for subsequent radiopharmaceutical production. It also looks like the 
“solution target” with Niobium body and Niobium foil is a viable approach to a broader class of 
metal radioisotopes, bypassing the need for electroplating and solid targets.   
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Using the Neutron Flux from p,n Reactions for n,p Reactions on Medical 

Cyclotrons 

Jonathan Siikanena,b and Anders Sandellb  
aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden   
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund,  Sweden 
 
The formation of the isomeric pair 58Com,g can be reached via the 58Ni(n,p), 59Co(n,2n), 59Co(p,pn), 
58Fe(p,n), 57Fe(d,n), 55Mn(a,n), and 61Ni(p,a) reactions. Natural nickel (68.1% 58Ni) foils were placed 
behind a [18F]Flouride water target to produce 58Co[1] (T1/2=70.86 d, β+=14.9%, Eγ=811 keV, 99.4%) 
through the 58Ni(n,p)58Co reaction. The water target is mounted on a MC 17 Scanditronix cyclotron 
(15.5 MeV protons on water). To quantify the 58Co activity the irradiated foils were measured after 
four days (after EOB) for a full conversion of the co-produced metastable state 58mCo (T1/2=9 h).  
 
Nickel foils (~20x20 mm) with different thicknesses were placed between the water cooling tubes on 
the backside of the water target according to figure 3. The foils were irradiated with ejected neutrons 
from the 18O(p,n)18F reaction for different accumulated proton charges (µAh) in the water target.  
 
So far, 58Co-activities of about 0.1-0.15 kBq/µAh have been produced in 0.25 mm thick foils and 
approximately 1 kBq/µAh in a 2 mm thick foil. The 58Co activities were quantified with an HPGe 
detector against a known 511 keV peak in same geometry. More results will be presented at the 
conference. 
 

 
Fig 1: Backplate, side view 

 
Fig 3: Backplate housing the niobium-insert with a 2 
mm nickel foil on the rearside between water tubes 

 
Fig 2: niobium insert 

References: 
C.E. Mellish & J.A. Payne, Nature Vol 187/275-276/1956 
H.-J. Lincke, Radioanal.Nucl.Chem.,Letters 87/5/311-316/1984 
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Repairing water leaks in the TR-19 cyclotron:  A case study in what not to do.  MJ Schueller, DJ 
Schlyer.  Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA. 
 
 In early September, 2009, a water leak opened up in one of the dees of BNL's ACSI TR-19/9 
cyclotron.  Attempts to patch the leak in place failed, so the dee was removed, repaired and replaced.  
After a week of operation, a nearly identical leak opened in the other dee.  This began a chain of 
failures in the cyclotron, leading to approximately 8 months of down time in the human PET program 
at BNL.  Multiple water leaks, burned internal components, and two new dees later, the machine is 
back to running stably.   
 A time sequence of events will be presented, with cascading problems, and a discussion of 
what steps were taken and why, with a particular focus on in house repairs that "seemed like a good 
idea at the time."   
 
Some highlights: 
 

 
 
The first leak, in an elbow near the dee stem. 
 
 
 
 

 
 
Fingerstock shouldn't look like this.  When we 
opened the vacuum tank and smelled burned 
flux we knew we had a problem. 
 
This issue was finally resolved with ACSI 
providing a replacement part with factory-
soldered fingerstock. 
 

 
 
An attempt by BNL to replace burned 
fingerstock in situ failed.  The cold solder joint 
held for a few weeks. 
 

 
 
The new lower dee was installed and aligned, 
then removed to replace the burned 
fingerstock.  At some point, it became bent 
~2mm at the dee tip.  Made of 7mm copper, it 
did not bend back easily.  The cause is 
unknown.  
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Improved High Current Liquid and Gas Targets for Cyclotron 
Produced Radioisotopes 

 
AlJammaz  I., AlRayyes A., Chai J., Ditroi F., Jensen M., Kivrakdal D., Nickles J., 
Ruth T., Schlyer D., H. Schweickert., Solin O., Winkel P., M.Haji-Saeid, M. Pillai  
 

Coordinated Research Project, International Atomic Energy Agency 
P.O. Box 100, Wagramer Straße 5, A-1400 Vienna 

 
Radiopharmaceuticals utilizing cyclotron produced radionuclides have already been shown to be 
extremely valuable in basic medical research, disease diagnosis and radiotherapy. IAEA Member 
States world-wide have acquired more than 600 cyclotrons employed for nuclear medicine 
applications and the number is growing every year. In the past, cyclotrons and the related targetry 
systems were mainly operated by dedicated professionals situated either within academic physics 
research institutions, large university hospitals or industrial scale radionuclide manufacturers. 
However, because of the rapidly spreading use of PET and PET/CT, the number of cyclotron 
installations is rapidly growing and target technology needs to be appreciated by a much larger 
group of professionals. Although many of the new cyclotrons are primarily erected for the 
production of a single isotope (F-18) in the form of a single, well defined radiopharmaceutical 
(FDG) a sizeable fraction of these new installations have declared and started active research 
programs in C-11 and other non-traditional positron emitting radiotracers. As part of International 
Atomic Energy Agency (IAEA) activities to disseminate knowledge for member states, a three 
year Coordinated Research Project (CRP) was organized.  The overall goal of this CRP was the 
development of new and reliable cyclotron targetry technology for the production of high specific 
radioactivity for the most widely used radionuclides. 
Significant advances have been made under this CRP in the development and standardization of 
high power gas and liquid targets. The primary focus of this CRP was to develop targets and 
methods to increase specific activity, radionuclidic purity and production reliability for several 
radionuclides including F-18, C-11, I-123, and Rb-81/Kr-81m. These advances applied in several 
facilities have minimized the unnecessarily operator exposure to radiation.  A particular area of 
interest for this group was the recovery and characterization of enriched H2

18O focusing on the 
reuse of the water and several important conclusions were reached. It was determined that the 
tritium introduced by the inevitable nuclear reactions does not pose any health physics problems 
either during the tracer manufacturer or during potential water reclamation. It was further 
determined that radionuclides produced in the metal foil during irradiation are found in the target 
water at very low concentrations.  These impurities can be essentially eliminated by using noble 
metal plated foils and by the separation used for fluorine extraction from the O-18 water.  In no 
case were the radionuclides produced in the foil found in the final product. Moreover, a survey of 
target maintenance procedures has been carried out and the results of this survey are reported in 
this CRP. In spite of these findings, the knowledge that has been gained needs to be transferred to 
the countries and facilities where it will help to optimize the production of radionuclides used for 
PET and SPECT.  In this regard, a book will be published focusing on two of the most widely 
used target systems (F-18 and C-11) and including both fundamental knowledge and practical 
advice on the operation of these target systems.  In addition to this book, lectures have been 
planned to convey both the knowledge gained in this CRP and the problems identified by the 
expert panel to the wider radionuclide production community with the idea that further research 
on these problems will benefit all the member states and the community in general.  
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120+ µA Single 18F-  Target and Beam Port Upgrade for the RDS/Eclipse

Matthew H. Stokely1, Thomas M. Stewart2 and Bruce W. Wieland1

1Bruce Technologies, Inc., Chapel Hill, NC, USA, 27514
2D-Pace, Inc., PO Box 201, Nelson, BC, Canada, V1L 5P9

A high power (>1.3 kW) target platform has been developed for the RDS-111/Eclipse 
and RDS-112 cyclotrons.  This fully  engineered solution includes upgrades to four subsystems: 
target, beam port, target support unit and deionized water cooling system. This platform has been 
in service 6 days per week since August 2009. The target is operated within an intensity range of 
100 to 120 µA with a mean 18F saturation yield of 121 mCi/µA. Only 2300 µL of [18O]enriched water 
is consumed each irradiation, resulting in one of the highest aqueous 18F target power densities to 
date (570 W/cc).  In addition to offering unprecedented performance, the single target platform 
greatly simplifies operation and improves the overall robustness of the cyclotron system.

The water target model CF-1000 is a conventionally pressurized cousin to the highly 
optimized, bottom pressurized Thermosyphon target. Due to the small volume of the target and the 
simplicity of using the OEM target support unit software, bottom pressurization was not viable. The 
target insert is constructed of either EB melted or arc cast tantalum or niobium, and is housed in a 
6061 aluminum body. The conduction layer between cooling water and target medium is less than 
0.030” for all chamber surfaces except  the target window, and the flow regime is fully developed 
turbulent in all cooling water passages. To achieve turbulent conditions a conservative minimum 
flow rate of 2.5 GPM is required for this specific geometry. Window cooling is provided by nucleate 
boiling in the target medium.

The single target port replaces the rotating “turret” target changer on the 111/Eclipse 
cyclotron. The port includes a beam tube, vacuum isolation valve, water cooled graphite collimator, 
and vacuum roughing line. The assembly is constructed primarily of hard anodized 6061 aluminum 

for ruggedness and electrical isolation. 
Some PEEK is used sparingly in high 
wear  areas  and  critical  insulating 
layers.  The ring collimator  is made of 
very low porosity ATJ grade graphite to 
mitigate water absorption during target 
changes.  This  greatly  shortens 
subsequent  pump  down  time.  The 
graphite is baked out at 150C under 10 
microns  partial  vacuum  prior  to 
installation.  The  assembly  mounts  to 
the cyclotron steel via the carrier plate 
which  allows  for  independent 
adjustment  in  x  and  y  via  small  lead 
screws. The collimator, port and beam 
tube section  interface with  the  carrier 
plate via a spherical bearing, which is 
clamped  in  place  after  alignment Figure 1: CF-1000 Installed on RDS-111 Cyclotron
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adjustments are made. This ensures that the collimator and target are coaxial at all  times and 
provides an extremely rigid yet easily adjustable mount.

A larger  recirculation  pump is  installed  in  the  water  system to  accommodate the 
additional  flow  requirements.  To  ensure  that  proper  flow  balance  is  maintained,  adjustable 
distribution manifolds are installed at the recirculation pump inlet and outlet. The supply manifold 
has a back-pressure regulating valve to allow bypass flow. This prevents both dead heading and 
overpressure conditions when the cyclotron is shut down. The upgrades to the water system are a 
small fraction of the total system fabrication cost and critical to high performance operation.

The target support unit(TSU) geometry was redesigned to mitigate the pressure rise 
from elevated vapour fraction at high intensity and to improve liquid recovery. The OEM software is 
used to operate the TSU so the functionality remained the same. Significant improvement is made 
from a maintenance perspective as a much more suitable pressure transducer is used resulting in 
smaller hysteresis, increased robustness and a reduction in replacement cost of more than a factor 
of five.

The performance history of the target system is shown in figure 2. The product was 
used  exclusively  for  clinical  18FDG,  and  showed  radiochemical  yields  consistently  within 
specifications for both synthesis modules used. Note that the discontinuity at run number 65 is 
due  to  change  in  the  Capintec  CRC-15PET  dose  calibrator  settings.  This  is  the  result  of  a 
technical bulletin issued by Capintec in 2009.

Figure 2: Operational Performance from DV3
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